留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

吊顶主次龙骨节点受剪和受弯性能试验研究

王勇 蒋欢军 吴宸

王勇, 蒋欢军, 吴宸. 吊顶主次龙骨节点受剪和受弯性能试验研究[J]. 工程力学, 2022, 39(8): 61-68, 79. doi: 10.6052/j.issn.1000-4750.2021.04.0266
引用本文: 王勇, 蒋欢军, 吴宸. 吊顶主次龙骨节点受剪和受弯性能试验研究[J]. 工程力学, 2022, 39(8): 61-68, 79. doi: 10.6052/j.issn.1000-4750.2021.04.0266
WANG Yong, JIANG Huan-jun, WU Chen. EXPERIMENTAL STUDY ON SHEAR AND BENDING BEHAVIOR OF MAIN-CROSS TEE JOINTS OF SUSPENDED CEILING[J]. Engineering Mechanics, 2022, 39(8): 61-68, 79. doi: 10.6052/j.issn.1000-4750.2021.04.0266
Citation: WANG Yong, JIANG Huan-jun, WU Chen. EXPERIMENTAL STUDY ON SHEAR AND BENDING BEHAVIOR OF MAIN-CROSS TEE JOINTS OF SUSPENDED CEILING[J]. Engineering Mechanics, 2022, 39(8): 61-68, 79. doi: 10.6052/j.issn.1000-4750.2021.04.0266

吊顶主次龙骨节点受剪和受弯性能试验研究

doi: 10.6052/j.issn.1000-4750.2021.04.0266
基金项目: 同济大学地震工程国际合作联合实验室项目(0200121005/058);上海市优秀学术带头人计划项目(18XD1403900)
详细信息
    作者简介:

    王 勇(1993−),男,山西人,博士生,主要从事非结构构件抗震研究(E-mail: yongwang0305@163.com)

    吴 宸(1993−),男,江西人,博士生,主要从事非结构构件抗震研究(E-mail: wuchen@tongji.edu.cn)

    通讯作者:

    蒋欢军(1973−),男,浙江人,教授,博士,主要从事工程结构抗震与防灾研究(E-mail: jhj73@tongji.edu.cn)

  • 中图分类号: TU8;P315.9

EXPERIMENTAL STUDY ON SHEAR AND BENDING BEHAVIOR OF MAIN-CROSS TEE JOINTS OF SUSPENDED CEILING

  • 摘要: 近年发生的地震中吊顶的震害显著,主次龙骨节点失效是吊顶破坏的主要原因之一。为评估吊顶主次龙骨节点的受剪和受弯性能,对其开展单调加载和低周往复加载试验,考察了节点的破坏模式、承载力、变形能力、滞回性能和耗能能力,建立了节点的易损性曲线。研究结果表明:主次龙骨节点主轴受剪和次轴受剪的破坏模式分别为节点剪切破坏和节点面外弯曲并脱出,主次龙骨节点受弯的破坏模式是节点脆性脱出破坏。对比节点主轴受剪,节点次轴受剪时强度更低,但节点变形能力更强。对比节点主轴受弯,节点次轴受弯时强度更高,但节点转动能力稍低。主次龙骨节点受剪和受弯时的荷载-位移滞回曲线捏拢效应显著,耗能能力不强。易损性分析表明,主次龙骨节点次轴受剪和主轴受弯时更容易破坏。
  • 图  1  主次龙骨节点的组成

    Figure  1.  Composition of main-cross tee joint

    图  2  主次龙骨节点的主次轴定义 /mm

    Figure  2.  Axis definition of main-cross tee joints

    图  3  试验类型和受力图

    Figure  3.  Test types and mechanical diagrams

    图  4  加载装置示意图

    Figure  4.  Schematic of test setup

    图  5  低周往复试验的加载制度

    Figure  5.  Loading protocol of cyclic test

    图  6  主次龙骨节点主轴受剪的破坏现象

    Figure  6.  Damage to main-cross tee joints in the strong axis during shear tests

    图  7  主次龙骨节点次轴受剪的破坏现象

    Figure  7.  Damage to main-cross tee joints in the weak axis during shear tests

    图  8  主次龙骨节点主轴受弯的破坏现象

    Figure  8.  Damage to main-cross tee joints in the strong axis during bending tests

    图  9  主次龙骨节点次轴受弯的破坏现象

    Figure  9.  Damage to main-cross tee joints in the weak axis during bending tests

    图  10  试件的荷载-位移关系曲线

    Figure  10.  Force-displacement relationship curves of specimens

    图  11  试件受剪和受弯累积耗能对比

    Figure  11.  Comparison of the accumulated dissipated energy of specimens in shear and bending tests

    图  12  主次龙骨节点的易损性曲线

    Figure  12.  Fragility curves of main-cross tee joints

    表  1  试件的综合信息

    Table  1.   General information of specimens

    试件
    对象
    试验
    类型
    加载
    类型
    加载方向数量试件编号





    受剪
    试验
    正向主轴3CJS-A1-C1
    CJS-A1-C2
    CJS-A1-C3
    负向3CJS-A2-C1
    CJS-A2-C2
    CJS-A2-C3
    低周往复3CJS-A3-C1
    CJS-A3-C2
    CJS-A3-C3
    正向次轴3CJS-B1-C1
    CJS-B1-C2
    CJS-B1-C3
    负向3CJS-B2-C1
    CJS-B2-C2
    CJS-B2-C3
    低周往复3CJS-B3-C1
    CJS-B3-C2
    CJS-B3-C3
    受弯
    试验
    正向主轴2CJB-A1-C1
    CJB-A1-C2
    负向2CJB-A2-C1
    CJB-A2-C2
    低周往复3CJB-A3-C1
    CJB-A3-C2
    CJB-A3-C3
    正向次轴2CJB-B1-C1
    CJB-B1-C2
    负向2CJB-B2-C1
    CJB-B2-C2
    低周往复3CJB-B3-C1
    CJB-B3-C2
    CJB-B3-C3
    下载: 导出CSV

    表  2  主次龙骨节点的受剪试验结果

    Table  2.   Test results of main-cross tee joints during shear tests

    试验对象试验类型加载类型加载方向$ \mathop F\nolimits_{\rm p}^ + $$ \mathop D\nolimits_{\rm p}^ + $$ \mathop F\nolimits_{\rm p}^ - $$ \mathop D\nolimits_{\rm p}^ - $
    主次龙骨
    节点
    受剪
    试验
    正向主轴106212.0
    负向106411.0
    低周往复101211.2122211.9
    正向次轴92832.3
    负向80927.4
    低周往复35915.036716.1
    注:荷载$ F $和位移$ D $的单位分别为N和mm;$ \mathop F\nolimits_{\rm p}^ + $和$\mathop F\nolimits_{\rm p}^ -$分别为正向和负向峰值荷载;$ \mathop D\nolimits_{\rm p}^ + $和$ \mathop D\nolimits_{\rm p}^ - $分别为正向和负向峰值荷载对应的位移。
    下载: 导出CSV

    表  3  主次龙骨节点的受弯试验结果

    Table  3.   Test results of main-cross tee joints during bending tests

    试验对象试验类型加载类型加载方向$ \mathop M\nolimits_{\rm p}^ + $$ \mathop \theta \nolimits_{\rm p}^ + $$ \mathop M\nolimits_{\rm p}^ - $$ \mathop \theta \nolimits_{\rm p}^ - $
    主次龙骨
    节点
    受弯试验正向主轴9.4350.200
    负向7.9900.255
    低周往复9.6050.2376.0350.254
    正向次轴45.7520.299
    负向28.2200.213
    低周往复23.0350.21622.9880.181
    注:弯矩$ M $和转角$ \theta $的单位分别为kN·mm和rad;$ \mathop M\nolimits_{\rm p}^ + $和$ \mathop M\nolimits_{\rm p}^ - $分别为正向和负向峰值弯矩;$ \mathop \theta \nolimits_{\rm p}^ + $和$ \mathop \theta \nolimits_{\rm p}^ - $分别为正向和负向峰值弯矩对应的转角。
    下载: 导出CSV

    表  4  主次龙骨节点的易损性参数

    Table  4.   Fragility parameters of main-cross tee joints

    试验对象试验类型加载方向DS1
    ${x_{\rm m}}$$ \beta $
    主次龙骨
    节点
    受剪试验 主轴 1.037 0.254
    次轴 0.312 0.313
    受弯试验 主轴 7.967 0.361
    次轴 19.512 0.269
    注:受剪试验对应的数据单位为kN;受弯试验对应的数据单位为kN·mm。
    下载: 导出CSV
  • [1] Miranda E, Mosqueda G, Retamales R, et al. Performance of nonstructural components during the 27 February 2010 Chile earthquake [J]. Earthquake Spectra, 2012, 28(Suppl 1): S453 − S471.
    [2] Dhakal R P, Macrae G A, Hogg K. Performance of ceilings in the February 2011 Christchurch earthquake [J]. Bulletin of the New Zealand Society for Earthquake Engineering, 2011, 44(4): 377 − 387. doi: 10.5459/bnzsee.44.4.377-387
    [3] 李戚齐, 曲哲, 解全才, 等. 我国公共建筑中吊顶的震害特征及其易损性分析[J]. 工程力学, 2019, 36(7): 207 − 215. doi: 10.6052/j.issn.1000-4750.2018.10.0358

    Li Qiqi, Qu Zhe, Xie Quancai, et al. Seismic damage characteristics and fragility of suspended ceilings in Chinese public buildings [J]. Engineering Mechanics, 2019, 36(7): 207 − 215. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.10.0358
    [4] Qi L, Kurata M, Ikeda Y, et al. Seismic evaluation of two-elevation ceiling system by shake table tests [J]. Earthquake Engineering & Structural Dynamics, 2020: 1 − 20.
    [5] 黄宝锋, 华夏, 卢文胜. 浮放花瓶动力反应机理与振动台试验研究[J]. 工程力学, 2020, 37(8): 112 − 122. doi: 10.6052/j.issn.1000-4750.2019.09.0536

    Huang Baofeng, Hua Xia, Lu Wensheng. Seismic response behavior and shaking table tests on freestanding vase [J]. Engineering Mechanics, 2020, 37(8): 112 − 122. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.09.0536
    [6] 尚庆学, 郑迦译, 李吉超, 等. 各国规范对于楼面峰值加速度规定的对比研究[J]. 工程力学, 2020, 37(增刊 1): 91 − 96. doi: 10.6052/j.issn.1000-4750.2019.05.S013

    Shang Qingxue, Zheng Jiayi, Li Jichao, et al. Comparative study of relevant specifications on peak floor acceleration in current codes of different countries [J]. Engineering Mechanics, 2020, 37(Suppl 1): 91 − 96. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.05.S013
    [7] Zhou T, Wang X, Liu W, et al. Shaking table tests on seismic response of discontinuous suspended ceilings [J]. Journal of Building Engineering, 2021: 102916.
    [8] Soroushian S, Rahmanishamsi E, Ryu K P, et al. Experimental fragility analysis of suspension ceiling systems [J]. Earthquake Spectra, 2016, 32(2): 881 − 908. doi: 10.1193/071514eqs109m
    [9] Jiang H J, Wang Y, Kasai K, et al. Shaking table tests on Chinese style suspended ceiling systems [C]// 17th World Conference on Earthquake Engineering. Sendai, Japan, International Association for Earthquake Engineering, 2020.
    [10] Paganotti G, Dhakal R, Macrae G. Development of typical NZ ceiling system seismic fragilities [C]// Proceedings of the Ninth Pacific Conference on Earthquake Engineering. Auckland, New Zealand, New Zealand Society for Earthquake Engineering, 2011.
    [11] Dhakal R P, Macrae G A, Pourali A, et al. Seismic fragility of suspended ceiling systems used in NZ based on component tests [J]. Bulletin of the New Zealand Society for Earthquake Engineering, 2016, 49(1): 45 − 63. doi: 10.5459/bnzsee.49.1.45-63
    [12] Pourali A. Seismic performance of suspended ceilings [D]. Christchurch: University of Canterbury, 2017.
    [13] Soroushian S, Maragakis E M, Jenkins C. Capacity evaluation of suspended ceiling components, part 1: Experimental studies [J]. Journal of Earthquake Engineering, 2015, 19(5-6): 784 − 804.
    [14] Soroushian S, Maragakis E M, Jenkins C. Capacity evaluation of suspended ceiling components, part 2: Analytical studies [J]. Journal of Earthquake Engineering, 2015, 19(5-6): 805 − 821.
    [15] Soroushian S, Maragakis M, Jenkins C. Axial capacity evaluation for typical suspended ceiling joints [J]. Earthquake spectra, 2016, 32(1): 547 − 565. doi: 10.1193/123113EQS301M
    [16] 宋喜庆. 矿棉板吊顶关键节点抗震性能研究 [D]. 哈尔滨: 哈尔滨理工大学, 2018.

    Song Xiqing. Seismic performance of key joint in mineral wool board suspended ceiling [D]. Harbin: Harbin University of Science and Technology, 2018. (in Chinese)
    [17] Retamales R, Mosqueda G, Filiatrault A, et al. New experimental capabilities and loading protocols for seismic qualification and fragility assessment of nonstructural components [R]. Buffalo: State University of New York at Buffalo, 2008.
    [18] Porter K, Kennedy R, Bachman R. Creating fragility functions for performance-based earthquake engineering [J]. Earthquake Spectra, 2007, 23(2): 471 − 489. doi: 10.1193/1.2720892
    [19] FEMA P-58-2, Seismic performance assessment of buildings volume 2: implementation guide [S]. Washington: Federal Emergency Management Agency, 2012.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  254
  • HTML全文浏览量:  96
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-08
  • 修回日期:  2021-07-25
  • 网络出版日期:  2021-08-27
  • 刊出日期:  2022-08-01

目录

    /

    返回文章
    返回