A COMBINED BUCKLING ELEMENT AND ITS APPLICATION IN THE COLLAPSE SIMULATION OF TRANSMISSION TOWERS
-
摘要: 为准确模拟输电塔构件的屈曲特征,该文提出了一种组合式屈曲单元。该单元基于有限元基本理论,用宏观塑性铰来实现构件材料的非线性,采用拉压弹簧模拟轴向塑性伸长,采用转动弹簧模拟塑性弯曲。基于MATLAB程序编写了该单元的静动力仿真程序,并应用于输电塔结构的静力推覆分析和倒塌仿真。通过对比自编程序和ABAQUS软件的仿真结果,验证了自编程序在几何非线性和动力求解方面的正确性;同时与钢支撑实验数据对比,验证了该组合式屈曲单元对非线性行为模拟的精确性和适用性;采用该单元对输电塔足尺实验进行了模拟,结果表明,该组合式屈曲单元可以有效地预测输电塔的极限承载力、失效位置及倒塌过程。Abstract: To accurately simulate the buckling characteristics of transmission tower members, a combined buckling element is proposed in this paper. Based on the basic theory of finite element method, the proposed element uses macroscopic plastic hinges to implement the nonlinearity of the member materials. Tension and compression springs are used to simulate the axial plastic elongation, while rotating springs are used to simulate plastic bending. A static and dynamic simulation program based on the proposed element was written based on MATLAB and applied to the static pushover analysis and collapse simulation of transmission tower structures. By comparing the simulation results of the self-written program with ABAQUS, the correctness of the self-written program in geometric nonlinearity and dynamic solution was verified. Compared with the experimental data of steel braces, the accuracy and applicability of the combined buckling element in the simulation of the nonlinear behavior were verified. The proposed element was used to simulate the full-scale experiment of a transmission tower. The results show that the combined buckling element can effectively predict the ultimate strength, failure location and collapse process of the transmission tower.
-
表 1 悬臂梁结构信息
Table 1. Information of cantilever beam structure
长度/m 外径/m 壁厚/m 弹性模量/(N/m2) 泊松比 1 0.05 0.01 2×1011 0.3 表 2 悬臂梁结构及荷载信息
Table 2. Information of cantilever beam structure and load
长度/m 弹性模量/(N/m2) 泊松比 x方向荷载/N y方向荷载/N 1 2×1011 0.3 −2×105 2×105 表 3 框架结构节点坐标
Table 3. Node coordinates of frame structure
节点编号 x/m y/m z/m 1 0.8 0.6 0.0 5 0.7 0.5 1.5 9 0.6 0.4 3.0 表 4 框架结构构件参数
Table 4. Element parameters of frame structure
弹性模量/(N/m2) 泊松比 密度/(kg/m3) 截面
类型外径/m 壁厚/m 2×1011 0.3 7800 圆钢管 0.05 0.01 表 5 框架结构前十阶频率对比
Table 5. Comparison of first ten frequencies of frame structure
阶次 自编程序/Hz ABAQUS软件/Hz 相对误差/(%) 1 8.1518 8.1505 0.02 2 9.0930 9.0806 0.14 3 11.4489 11.4380 0.10 4 23.5416 23.5350 0.03 5 24.3571 24.3300 0.11 6 30.7225 30.6870 0.12 7 35.7577 35.6770 0.23 8 55.4323 55.2080 0.41 9 62.4810 62.3880 0.15 10 70.5638 70.3940 0.24 名称 截面/mm2 长度/m 长细比 材料屈服应力/MPa Brace1 Pipe4$ \times $0.237 3.07 80 328 Brace2 W6$ \times $20 3.07 80 277 Brace3 W5$ \times $16 3.66 80 246 Brace4 2-L6$ \times $20 4.04 80 281 表 7 偏心距对承载力的影响
Table 7. Effect of eccentricity distance on strength
偏心距 承载力/N L/200 485 667 L/300 552 738 L/400 591 460 L/500 617 420 L/600 630 660 -
[1] 李宏男, 白海峰. 输电塔线体系的风(雨)致振动响应与稳定性研究[J]. 土木工程学报, 2008, 41(11): 31 − 38. doi: 10.3321/j.issn:1000-131X.2008.11.006Li Hongnan, Bai Haifeng. Dynamic behavior and stability of transmission tower-line system under wind (rain) forces [J]. China Civil Engineering Journal, 2008, 41(11): 31 − 38. (in Chinese) doi: 10.3321/j.issn:1000-131X.2008.11.006 [2] Fu X, Li H N, Tian L, et al. Fragility analysis of a transmission line subjected to wind loading [J]. Journal of Performance of Constructed Facilities, 2019, 33(4): 0887 − 3828. [3] 陈波, 宋欣欣, 吴镜泊. 输电塔线体系力学模型研究进展[J]. 工程力学, 2021, 38(5): 1 − 21. doi: 10.6052/j.issn.1000-4750.2020.08.ST07Chen Bo, Song Xinxin, Wu Jingpo. Research progress in mechanical model of transmission tower line system [J]. Engineering Mechanics, 2021, 38(5): 1 − 21. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.ST07 [4] 刘俊才, 田利, 张睿, 等. 远场地震作用下输电塔-线体系最不利输入方向预测研究[J]. 工程力学, 2020, 37(增刊): 97 − 103. doi: 10.6052/j.issn.1000-4750.2019.05.S014Liu Juncai, Tian Li, Zhang Rui, et al. Study on the prediction of the most adverse input direction of transmission tower-line system under far-field seismic ground motions [J]. Engineering Mechanics, 2020, 37(Suppl): 97 − 103. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.05.S014 [5] 戴靠山, 胡皓, 梅竹, 等. 长周期地震下风力发电塔架结构地震反应分析[J]. 工程力学, 2021, 38(8): 213 − 221. doi: 10.6052/j.issn.1000-4750.2021.02.0121Dai Kaoshan, Hu Hao, Mei Zhu, et al. Seismic response analysis of wind power under long period ground motions [J]. Engineering Mechanics, 2021, 38(8): 213 − 221. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.02.0121 [6] 付兴, 林友新, 李宏男. 风雨共同作用下高压输电塔的风洞试验及反应分析[J]. 工程力学, 2014, 34(1): 72 − 78. doi: 10.6052/j.issn.1000-4750.2012.09.0634Fu Xing, Lin Youxin, Li Hongnan. Wind tunnel test and response analysis of high-voltage transmission tower subjected to combined loads of wind and rain [J]. Engineering Mechanics, 2014, 34(1): 72 − 78. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.09.0634 [7] 张卓群, 李宏男, 李士锋, 等. 输电塔-线体系灾变分析与安全评估综述[J]. 土木工程学报, 2016, 49(12): 75 − 88.Zhang Zhuoqun, Li Hongnan, Li Shifeng, et al. Disaster analysis and safety assessment on transmission tower-line system: an overview [J]. China Civil Engineering Journal, 2016, 49(12): 75 − 88. (in Chinese) [8] Albermani F, Kitipornchai S, Chan R W K. Failure analysis of transmission towers [J]. Engineering Failure Analysis, 2008, 16(6): 1922 − 1928. [9] Patil H, Doshi G, Prasad R N, et al. Failure analysis of transmission line tower: a case study [J]. The IUP Journal of Structural Engineering, 2010, 3(1): 20 − 27. [10] 王凤阳. 输电塔结构多尺度模拟方法及倒塌分析 [D]. 哈尔滨: 哈尔滨工业大学, 2015.Wang Fengyang. Multi-scale simulation method and collapse analysis of transmission tower structures [D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese) [11] 姚旦, 沈国辉, 潘峰, 等. 基于向量式有限元的输电塔风致动力响应研究[J]. 工程力学, 2015, 32(11): 63 − 70. doi: 10.6052/j.issn.1000-4750.2013.08.0795Yao Dan, Shen Guohui, Pan Feng, et al. Wind-induced dynamic response of transmission tower using vector-form intrinsic finite element method [J]. Engineering Mechanics, 2015, 32(11): 63 − 70. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.08.0795 [12] 苏慈. 大跨度刚性空间钢结构极限承载力研究[D]. 上海: 同济大学, 2006.Su Ci. Research on the limited capacity of rigid large-span steel space structures [D]. Shanghai: Tongji University, 2006. (in Chinese) [13] Jin J, El-Tawil S. Inelastic cyclic model for steel braces [J]. Journal of Engineering Mechanics, 2003, 129(5): 548 − 557. doi: 10.1061/(ASCE)0733-9399(2003)129:5(548) [14] Salawdeh S, Goggins J. Numerical simulation for steel brace members incorporating a fatigue model [J]. Engineering Structures, 2013, 46(2013): 332 − 349. [15] Dicleli M, Calik E E. Physical theory hysteretic model for steel braces [J]. Journal of Structural Engineering, 2008, 134(7): 1215 − 1228. doi: 10.1061/(ASCE)0733-9445(2008)134:7(1215) [16] Takeuchi T, Matsui R. Cumulative deformation capacity of steel braces under various cyclic loading histories [J]. Journal of Structural Engineering, 2014, 141(7): 0733 − 9445. [17] Haroun N M, Shepherd R. Inelastic behavior of X-bracing in plane frames [J]. Journal of Structural Engineering, 1986, 112(4): 764 − 780. doi: 10.1061/(ASCE)0733-9445(1986)112:4(764) [18] 刘庆志, 赵作周, 陆新征, 等. 钢支撑滞回曲线的模拟方法[J]. 建筑结构, 2011, 41(8): 63 − 106.Liu Qingzhi, Zhao Zuozhou, Lu Xinzheng, et al. Simulation methods for hysteretic curve of steel braces [J]. Building Structure, 2011, 41(8): 63 − 106. (in Chinese) [19] 靳永强, 李钢, 李宏男. 基于拟力法的钢支撑非线性滞回行为模拟[J]. 工程力学, 2017, 34(10): 139 − 148. doi: 10.6052/j.issn.1000-4750.2016.06.0444Jin Yongqiang, Li Gang, Li Hongnan. Numerical simulation of steel brace hysteretic behavior based on the force analogy method [J]. Engineering Mechanics, 2017, 34(10): 139 − 148. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.06.0444 [20] 苑仁安, 秦顺全, 王帆, 等. 基于平面梁单元的几何非线性分阶段成形平衡方程[J]. 桥梁建设, 2014, 44(4): 45 − 49.Yuan Renan, Qin Shunquan, Wang Fan, et al. Equilibrium equation for geometric nonlinearity of structure formed in stages based on plane beam elements [J]. Bridge Construction, 2014, 44(4): 45 − 49. (in Chinese) [21] Black R G, Wenger W A, Popov E P. Inelastic buckling of steel struts under cyclic load reversals [R]. Berkeley, California: Earthquake Engineering Research Center, UCB/EE-RC-84/09, 1980. [22] Fu X, Wang J, Li H N, et al. Full-scale test and its numerical simulation of a transmission tower under extreme wind loads [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190: 119 − 133. doi: 10.1016/j.jweia.2019.04.011 -