留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种组合式屈曲单元及其在输电塔结构倒塌仿真分析中的应用

付兴 钟玺峰 李宏男 朱宇

付兴, 钟玺峰, 李宏男, 朱宇. 一种组合式屈曲单元及其在输电塔结构倒塌仿真分析中的应用[J]. 工程力学, 2022, 39(8): 80-87, 113. doi: 10.6052/j.issn.1000-4750.2021.04.0273
引用本文: 付兴, 钟玺峰, 李宏男, 朱宇. 一种组合式屈曲单元及其在输电塔结构倒塌仿真分析中的应用[J]. 工程力学, 2022, 39(8): 80-87, 113. doi: 10.6052/j.issn.1000-4750.2021.04.0273
FU Xing, ZHONG Xi-feng, LI Hong-nan, ZHU Yu. A COMBINED BUCKLING ELEMENT AND ITS APPLICATION IN THE COLLAPSE SIMULATION OF TRANSMISSION TOWERS[J]. Engineering Mechanics, 2022, 39(8): 80-87, 113. doi: 10.6052/j.issn.1000-4750.2021.04.0273
Citation: FU Xing, ZHONG Xi-feng, LI Hong-nan, ZHU Yu. A COMBINED BUCKLING ELEMENT AND ITS APPLICATION IN THE COLLAPSE SIMULATION OF TRANSMISSION TOWERS[J]. Engineering Mechanics, 2022, 39(8): 80-87, 113. doi: 10.6052/j.issn.1000-4750.2021.04.0273

一种组合式屈曲单元及其在输电塔结构倒塌仿真分析中的应用

doi: 10.6052/j.issn.1000-4750.2021.04.0273
基金项目: 国家自然科学基金项目(52078104);大连市高层次人才创新支持计划项目(2019RD01,2020RQ056)
详细信息
    作者简介:

    钟玺峰(1996−),男,福建人,硕士,主要从事输电线路仿真平台开发等研究(E-mail: 364678319@qq.com)

    李宏男(1957−),男,辽宁人,教授,博士,主要从事工程结构抗灾、健康监测方面等研究(E-mail: hnli@dlut.edu.cn)

    朱 宇(1997−),男,黑龙江人,博士生,主要从事输电线路仿真平台开发等研究(E-mail: 1346813753@qq.com)

    通讯作者:

    付 兴(1988−),男,辽宁人,副教授,博士,主要从事电网基础设施抗灾性能评估方面等研究(E-mail: fuxing@dlut.edu.cn)

  • 中图分类号: TM75

A COMBINED BUCKLING ELEMENT AND ITS APPLICATION IN THE COLLAPSE SIMULATION OF TRANSMISSION TOWERS

  • 摘要: 为准确模拟输电塔构件的屈曲特征,该文提出了一种组合式屈曲单元。该单元基于有限元基本理论,用宏观塑性铰来实现构件材料的非线性,采用拉压弹簧模拟轴向塑性伸长,采用转动弹簧模拟塑性弯曲。基于MATLAB程序编写了该单元的静动力仿真程序,并应用于输电塔结构的静力推覆分析和倒塌仿真。通过对比自编程序和ABAQUS软件的仿真结果,验证了自编程序在几何非线性和动力求解方面的正确性;同时与钢支撑实验数据对比,验证了该组合式屈曲单元对非线性行为模拟的精确性和适用性;采用该单元对输电塔足尺实验进行了模拟,结果表明,该组合式屈曲单元可以有效地预测输电塔的极限承载力、失效位置及倒塌过程。
  • 图  1  组合式屈曲单元构造及自由度编号

    Figure  1.  Structure and serial numbers of degrees of freedom for combined buckling element

    图  2  角钢构件屈服截面示意图

    Figure  2.  Schematic diagram of yield section for angle steel member

    图  3  悬臂梁荷载-位移结果对比

    Figure  3.  Comparison of load-displacement of cantilever beam

    图  4  大变形下悬臂梁荷载-位移对比

    Figure  4.  Comparison of load-displacement of cantilever beam considering large deformation

    图  5  框架结构有限元模型

    Figure  5.  Finite element model of frame structure

    图  6  框架结构位移时程曲线对比

    Figure  6.  Comparison of time-history curves of displacement for frame structure

    图  7  构件滞回曲线对比

    Figure  7.  Comparison of hysteresis curves of members

    图  8  实验塔倒塌过程[22]

    Figure  8.  Collapse process of experimental tower[22]

    图  9  推覆分析中输电塔塑性铰位置

    Figure  9.  Position of plastic hinges of transmission tower in pushover analysis

    表  1  悬臂梁结构信息

    Table  1.   Information of cantilever beam structure

    长度/m外径/m壁厚/m弹性模量/(N/m2)泊松比
    1 0.05 0.01 2×1011 0.3
    下载: 导出CSV

    表  2  悬臂梁结构及荷载信息

    Table  2.   Information of cantilever beam structure and load

    长度/m弹性模量/(N/m2)泊松比x方向荷载/Ny方向荷载/N
    12×10110.3−2×1052×105
    下载: 导出CSV

    表  3  框架结构节点坐标

    Table  3.   Node coordinates of frame structure

    节点编号x/my/mz/m
    1 0.8 0.6 0.0
    5 0.7 0.5 1.5
    9 0.6 0.4 3.0
    下载: 导出CSV

    表  4  框架结构构件参数

    Table  4.   Element parameters of frame structure

    弹性模量/(N/m2)泊松比密度/(kg/m3)截面
    类型
    外径/m壁厚/m
    2×10110.37800圆钢管0.050.01
    下载: 导出CSV

    表  5  框架结构前十阶频率对比

    Table  5.   Comparison of first ten frequencies of frame structure

    阶次自编程序/HzABAQUS软件/Hz相对误差/(%)
    1 8.1518 8.1505 0.02
    2 9.0930 9.0806 0.14
    3 11.4489 11.4380 0.10
    4 23.5416 23.5350 0.03
    5 24.3571 24.3300 0.11
    6 30.7225 30.6870 0.12
    7 35.7577 35.6770 0.23
    8 55.4323 55.2080 0.41
    9 62.4810 62.3880 0.15
    10 70.5638 70.3940 0.24
    下载: 导出CSV

    表  6  钢支撑参数[21]

    Table  6.   Parameters of steel brace[21]

    名称截面/mm2长度/m长细比材料屈服应力/MPa
    Brace1Pipe4$ \times $0.2373.0780328
    Brace2W6$ \times $203.0780277
    Brace3W5$ \times $163.6680246
    Brace42-L6$ \times $204.0480281
    下载: 导出CSV

    表  7  偏心距对承载力的影响

    Table  7.   Effect of eccentricity distance on strength

    偏心距承载力/N
    L/200 485 667
    L/300 552 738
    L/400 591 460
    L/500 617 420
    L/600 630 660
    下载: 导出CSV
  • [1] 李宏男, 白海峰. 输电塔线体系的风(雨)致振动响应与稳定性研究[J]. 土木工程学报, 2008, 41(11): 31 − 38. doi: 10.3321/j.issn:1000-131X.2008.11.006

    Li Hongnan, Bai Haifeng. Dynamic behavior and stability of transmission tower-line system under wind (rain) forces [J]. China Civil Engineering Journal, 2008, 41(11): 31 − 38. (in Chinese) doi: 10.3321/j.issn:1000-131X.2008.11.006
    [2] Fu X, Li H N, Tian L, et al. Fragility analysis of a transmission line subjected to wind loading [J]. Journal of Performance of Constructed Facilities, 2019, 33(4): 0887 − 3828.
    [3] 陈波, 宋欣欣, 吴镜泊. 输电塔线体系力学模型研究进展[J]. 工程力学, 2021, 38(5): 1 − 21. doi: 10.6052/j.issn.1000-4750.2020.08.ST07

    Chen Bo, Song Xinxin, Wu Jingpo. Research progress in mechanical model of transmission tower line system [J]. Engineering Mechanics, 2021, 38(5): 1 − 21. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.ST07
    [4] 刘俊才, 田利, 张睿, 等. 远场地震作用下输电塔-线体系最不利输入方向预测研究[J]. 工程力学, 2020, 37(增刊): 97 − 103. doi: 10.6052/j.issn.1000-4750.2019.05.S014

    Liu Juncai, Tian Li, Zhang Rui, et al. Study on the prediction of the most adverse input direction of transmission tower-line system under far-field seismic ground motions [J]. Engineering Mechanics, 2020, 37(Suppl): 97 − 103. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.05.S014
    [5] 戴靠山, 胡皓, 梅竹, 等. 长周期地震下风力发电塔架结构地震反应分析[J]. 工程力学, 2021, 38(8): 213 − 221. doi: 10.6052/j.issn.1000-4750.2021.02.0121

    Dai Kaoshan, Hu Hao, Mei Zhu, et al. Seismic response analysis of wind power under long period ground motions [J]. Engineering Mechanics, 2021, 38(8): 213 − 221. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.02.0121
    [6] 付兴, 林友新, 李宏男. 风雨共同作用下高压输电塔的风洞试验及反应分析[J]. 工程力学, 2014, 34(1): 72 − 78. doi: 10.6052/j.issn.1000-4750.2012.09.0634

    Fu Xing, Lin Youxin, Li Hongnan. Wind tunnel test and response analysis of high-voltage transmission tower subjected to combined loads of wind and rain [J]. Engineering Mechanics, 2014, 34(1): 72 − 78. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.09.0634
    [7] 张卓群, 李宏男, 李士锋, 等. 输电塔-线体系灾变分析与安全评估综述[J]. 土木工程学报, 2016, 49(12): 75 − 88.

    Zhang Zhuoqun, Li Hongnan, Li Shifeng, et al. Disaster analysis and safety assessment on transmission tower-line system: an overview [J]. China Civil Engineering Journal, 2016, 49(12): 75 − 88. (in Chinese)
    [8] Albermani F, Kitipornchai S, Chan R W K. Failure analysis of transmission towers [J]. Engineering Failure Analysis, 2008, 16(6): 1922 − 1928.
    [9] Patil H, Doshi G, Prasad R N, et al. Failure analysis of transmission line tower: a case study [J]. The IUP Journal of Structural Engineering, 2010, 3(1): 20 − 27.
    [10] 王凤阳. 输电塔结构多尺度模拟方法及倒塌分析 [D]. 哈尔滨: 哈尔滨工业大学, 2015.

    Wang Fengyang. Multi-scale simulation method and collapse analysis of transmission tower structures [D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese)
    [11] 姚旦, 沈国辉, 潘峰, 等. 基于向量式有限元的输电塔风致动力响应研究[J]. 工程力学, 2015, 32(11): 63 − 70. doi: 10.6052/j.issn.1000-4750.2013.08.0795

    Yao Dan, Shen Guohui, Pan Feng, et al. Wind-induced dynamic response of transmission tower using vector-form intrinsic finite element method [J]. Engineering Mechanics, 2015, 32(11): 63 − 70. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.08.0795
    [12] 苏慈. 大跨度刚性空间钢结构极限承载力研究[D]. 上海: 同济大学, 2006.

    Su Ci. Research on the limited capacity of rigid large-span steel space structures [D]. Shanghai: Tongji University, 2006. (in Chinese)
    [13] Jin J, El-Tawil S. Inelastic cyclic model for steel braces [J]. Journal of Engineering Mechanics, 2003, 129(5): 548 − 557. doi: 10.1061/(ASCE)0733-9399(2003)129:5(548)
    [14] Salawdeh S, Goggins J. Numerical simulation for steel brace members incorporating a fatigue model [J]. Engineering Structures, 2013, 46(2013): 332 − 349.
    [15] Dicleli M, Calik E E. Physical theory hysteretic model for steel braces [J]. Journal of Structural Engineering, 2008, 134(7): 1215 − 1228. doi: 10.1061/(ASCE)0733-9445(2008)134:7(1215)
    [16] Takeuchi T, Matsui R. Cumulative deformation capacity of steel braces under various cyclic loading histories [J]. Journal of Structural Engineering, 2014, 141(7): 0733 − 9445.
    [17] Haroun N M, Shepherd R. Inelastic behavior of X-bracing in plane frames [J]. Journal of Structural Engineering, 1986, 112(4): 764 − 780. doi: 10.1061/(ASCE)0733-9445(1986)112:4(764)
    [18] 刘庆志, 赵作周, 陆新征, 等. 钢支撑滞回曲线的模拟方法[J]. 建筑结构, 2011, 41(8): 63 − 106.

    Liu Qingzhi, Zhao Zuozhou, Lu Xinzheng, et al. Simulation methods for hysteretic curve of steel braces [J]. Building Structure, 2011, 41(8): 63 − 106. (in Chinese)
    [19] 靳永强, 李钢, 李宏男. 基于拟力法的钢支撑非线性滞回行为模拟[J]. 工程力学, 2017, 34(10): 139 − 148. doi: 10.6052/j.issn.1000-4750.2016.06.0444

    Jin Yongqiang, Li Gang, Li Hongnan. Numerical simulation of steel brace hysteretic behavior based on the force analogy method [J]. Engineering Mechanics, 2017, 34(10): 139 − 148. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.06.0444
    [20] 苑仁安, 秦顺全, 王帆, 等. 基于平面梁单元的几何非线性分阶段成形平衡方程[J]. 桥梁建设, 2014, 44(4): 45 − 49.

    Yuan Renan, Qin Shunquan, Wang Fan, et al. Equilibrium equation for geometric nonlinearity of structure formed in stages based on plane beam elements [J]. Bridge Construction, 2014, 44(4): 45 − 49. (in Chinese)
    [21] Black R G, Wenger W A, Popov E P. Inelastic buckling of steel struts under cyclic load reversals [R]. Berkeley, California: Earthquake Engineering Research Center, UCB/EE-RC-84/09, 1980.
    [22] Fu X, Wang J, Li H N, et al. Full-scale test and its numerical simulation of a transmission tower under extreme wind loads [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190: 119 − 133. doi: 10.1016/j.jweia.2019.04.011
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  25
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-11
  • 修回日期:  2021-09-23
  • 网络出版日期:  2021-10-01
  • 刊出日期:  2022-08-25

目录

    /

    返回文章
    返回