EXPERIMENTAL AND NUMERICAL RESEARCH ON STATIC PERFORMANCE OF STEEL-UHPC COMPOSITE BOX GIRDER
-
摘要: 以云南红河特大桥为工程背景,设计2个钢-超高性能混凝土(ultra-high performance concrete,UHPC)组合箱梁节段模型试验,主要关注组合箱梁的承载力、破坏模式和抗裂性能等。基于通用有限元软件ABAQUS建立组合箱梁的精细有限元模型,通过试验结果验证模型并开展参数分析,研究UHPC板厚度、配筋率、栓钉间距以及箱梁横隔板厚度对组合箱梁受力性能的影响,给出各参数的设计建议取值范围。研究结果表明:钢-UHPC组合箱梁承载力高、抗裂性能好;按最大裂缝宽度进行验算,等效为180 mm厚UHPC桥面板的承载力超过车辆荷载标准值的8倍;UHPC板厚度以及钢箱梁横隔板厚度对组合箱梁破坏模式影响较大;综合考虑经济性及受力性能,建议实际工程中UHPC桥面板厚度不宜超过210 mm,配筋率不宜超过1.4%,栓钉间距最大不超过450 mm。Abstract: Based on the Yunnan Honghe bridge, two segmental model tests of a steel-UHPC composite box girder were designed. The research focused on bearing capacity, on failure mode and on crack resistance of the composite box girder. The shell element-based finite element models (FEM) were established in ABAQUS and verified by test results. Parameter analysis was carried out to study the influence of UHPC slab thickness, reinforcement ratio, stud spacing and steel beam diaphragm thickness on the mechanical performance of the composite box girder. The design suggestions for each parameter were developed finally. The results show that: the steel-UHPC composite box girders exhibit high bearing capacity and good crack resistance; considering the limitation of maximum crack width, the bearing capacity of the 180 mm-thick equivalent UHPC bridge deck is more than 8 times of the vehicle load standard value; the thickness of UHPC slab and steel beam diaphragm show a great influence on the failure mode of the composite box girder; considering the balance of economy and mechanical performance, the actual thickness of UHPC bridge deck should be 210 mm and below, the reinforcement ratio should be 1.4% and below, and the stud spacing should be 450 mm and below.
-
图 1 试件设计[6] /mm
Figure 1. Test specimen design
表 1 试验主要结果
Table 1. Main results of tests
试件编号 Pu/kN Δcu/mm Δsu/mm CDS-1 1571.5 22.7 1.3 CDS-2 2636.0 15.8 2.1 注:Pu为极限承载力;Δcu、Δsu分别为达到极限承载力时的UHPC板顶跨中中点挠度和钢梁跨中挠度。 表 2 理论模型的主要结果
Table 2. Main results of theoretical model
试件编号 Pu/kN PFEA/kN PFEA/Pu Δcu/mm ΔFEA/mm ΔFEA/Δcu CDS-1 1571.5 1535.7 0.98 22.7 20.5 0.90 CDS-2 2636.0 2685.2 1.02 15.8 17.0 1.08 注:Pu为极限承载力;PFEA为精细有限元模型极限承载力;ΔFEA为精细有限元模型达到极限承载力时的挠度。 -
[1] 聂建国, 陶慕轩, 吴丽丽, 等. 钢-混凝土组合结构桥梁研究新进展[J]. 土木工程学报, 2012, 45(6): 110 − 122.Nie Jianguo, Tao Muxuan, Wu Lili, et al. Advances of research on steel-concrete composite bridges [J]. China Civil Engineering Journal, 2012, 45(6): 110 − 122. (in Chinese) [2] 王春生, 付炳宁, 张芹, 等. 正交异性钢桥面板足尺疲劳试验[J]. 中国公路学报, 2013, 26(2): 69 − 76. doi: 10.3969/j.issn.1001-7372.2013.02.011Wang Chunsheng, Fu Bingning, Zhang Qin, et al. Fatigue test on full-scale orthotropic steel bridge deck [J]. China Journal of Highway and Transport, 2013, 26(2): 69 − 76. (in Chinese) doi: 10.3969/j.issn.1001-7372.2013.02.011 [3] 唐亮, 黄李骥, 刘高, 等. 正交异性钢桥面板足尺模型疲劳试验[J]. 土木工程学报, 2014, 47(3): 112 − 122.Tang Liang, Huang Liji, Liu Gao, et al. Fatigue experimental study of a full-scale steel orthotropic deck model [J]. China Civil Engineering Journal, 2014, 47(3): 112 − 122. (in Chinese) [4] 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2014[J]. 中国公路学报, 2014, 27(5): 1 − 96. doi: 10.3969/j.issn.1001-7372.2014.05.001Editorial Department of China Journal of Highway and Transport. Review on China's bridge engineering research: 2014 [J]. China Journal of Highway and Transport, 2014, 27(5): 1 − 96. (in Chinese) doi: 10.3969/j.issn.1001-7372.2014.05.001 [5] Russell H G, Graybeal B A. Ultra-high performance concrete: A state-of-the-art report for the bridge community [R]. United States: Federal Highway Administration, Office of Infrastructure Research and Development, 2013. [6] 樊健生, 王哲, 杨松, 陈钒, 丁然. 钢-超高性能混凝土组合箱梁弹性弯曲性能试验研究及解析解[J]. 工程力学, 2020, 37(11): 36 − 46. doi: 10.6052/j.issn.1000-4750.2019.11.0700Fan Jiansheng, Wang Zhe, Yang Song, Chen Fan, Ding Ran. Experimental study on and analytical solution of the elastic bending behavior of steel-UHPC composite box girders [J]. Engineering Mechanics, 2020, 37(11): 36 − 46. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.11.0700 [7] 孙启力, 路新瀛, 聂鑫, 韩治健, 樊健生. 非蒸养UHPC-钢板结构界面的受拉和剪切性能试验研究[J]. 工程力学, 2017, 34(9): 167 − 174, 192. doi: 10.6052/j.issn.1000-4750.2016.05.0361Sun Qili, Lu Xinying, Nie Xin, Han Zhijian, Fan Jiansheng. Experimental research on tensile and shear behaviour of the interface between non-steam-cured UHPC and steel plate structure [J]. Engineering Mechanics, 2017, 34(9): 167 − 174, 192. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.05.0361 [8] 樊健生, 王哲, 杨松, 陈钒, 丁然. 超高性能混凝土板冲切与弯曲性能研究[J]. 工程力学, 2021, 38(4): 30 − 43. doi: 10.6052/j.issn.1000-4750.2020.06.0349Fan Jiansheng, Wang Zhe, Yang Song, Chen Fan, Ding Ran. Research on punching shear and bending behavior of ultra-high performance concrete slabs [J]. Engineering Mechanics, 2021, 38(4): 30 − 43. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0349 [9] Buitelaar P, Braam R, Kaptijn N. Reinforced high performance concrete overlay system for rehabilitation and strengthening of orthotropic steel bridge decks [C]// Orthotropic Bridge Conference. Sacramento, USA, 2004: 384 − 401. [10] Yang Y, Walraven J, den Uijl J. Study on bending behavior of an UHPC overlay on a steel orthotropic deck [C]// Second International Symposium on Ultra High Performance Concrete. Kassel, Germany, 2008: 639 − 636. [11] Shao X, Yi D, Huang Z, et al. Basic performance of the composite deck system composed of orthotropic steel deck and ultrathin RPC layer [J]. Journal of Bridge Engineering, 2011, 18(5): 417 − 428. [12] 邵旭东, 罗军, 曹君辉, 等. 钢-UHPC轻型组合桥面结构试验及裂缝宽度计算研究[J]. 土木工程学报, 2019, 52(3): 61 − 75.Shao Xudong, Luo Jun, Cao Junhui, et al. Experimental study and crack width calculation of steel-UHPC lightweight composite deck structure [J]. China Civil Engineering Journal, 2019, 52(3): 61 − 75. (in Chinese) [13] 刘梦麟, 邵旭东, 张哲, 等. 正交异性钢板-超薄RPC组合桥面板结构的抗弯疲劳性能试验[J]. 公路交通科技, 2012, 29(10): 46 − 53. doi: 10.3969/j.issn.1002-0268.2012.10.009Liu Menglin, Shao Xudong, Zhang Zhe, et al. Experiment on flexural fatigue performance of composite deck system composed of orthotropic steel deck and ultra-thin RPC layer [J]. Journal of Highway and Transportation Research and Development, 2012, 29(10): 46 − 53. (in Chinese) doi: 10.3969/j.issn.1002-0268.2012.10.009 [14] 田启贤, 高立强, 周尚猛, 等. 超高性能混凝土-钢正交异性板组合桥面试验研究[J]. 桥梁建设, 2019, 49(增刊 1): 13 − 19.Tian Qixian, Gao Liqiang, Zhou Shangmeng, et al. Research of composite bridge deck system with UHPC and orthotropic steel plate [J]. Bridge Construction, 2019, 49(Suppl 1): 13 − 19. (in Chinese) [15] Yuan Y, Wu C, Jiang X. Experimental study on the fatigue behavior of the orthotropic steel deck rehabilitated by UHPC overlay [J]. Journal of Constructional Steel Research, 2019, 157: 1 − 9. doi: 10.1016/j.jcsr.2019.02.010 [16] 刘诚, 樊健生, 聂建国, 等. 钢-超高性能混凝土组合桥面系中栓钉连接件的疲劳性能研究[J]. 中国公路学报, 2017, 30(3): 139 − 146. doi: 10.3969/j.issn.1001-7372.2017.03.015Liu Cheng, Fan Jiansheng, Nie Jianguo, et al. Fatigue performance research of headed studs in steel and ultra-high performance concrete composite deck [J]. China Journal of Highway and Transport, 2017, 30(3): 139 − 146. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.03.015 [17] Wang Z, Nie X, Fan J S, et al. Experimental and numerical investigation of the interfacial properties of non-steam-cured UHPC-steel composite beams [J]. Construction and Building Materials, 2019, 195: 323 − 339. doi: 10.1016/j.conbuildmat.2018.11.057 [18] Pan W, Fan J, Nie J, et al. Experimental study on tensile behavior of wet joints in a prefabricated composite deck system composed of orthotropic steel deck and ultrathin reactive-powder concrete layer [J]. Journal of Bridge Engineering, 2016, 21(10): 04016064. doi: 10.1061/(ASCE)BE.1943-5592.0000935 [19] 陈德宝, 曾明根, 苏庆田, 等. 钢-UHPC组合桥面板湿接缝界面处理方式[J]. 中国公路学报, 2018, 31(12): 154 − 162. doi: 10.3969/j.issn.1001-7372.2018.12.015Chen Debao, Zeng Minggen, Su Qingtian, et al. Interfacial treatment measures of wet joints in composite bridge deck composed of steel and UHPC layer [J]. China Journal of Highway and Transport, 2018, 31(12): 154 − 162. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.12.015 [20] T/CBMF 37−2018, T/CCPA 7−2018, 超高性能混凝土基本性能与试验方法[S]. 北京: 中国建材工业出版社, 2018.T/CBMF 37−2018, T/CCPA 7−2018, Ultra-high performance concrete-basic performance and test method [S]. Beijing: China Building Materials Press, 2018. (in Chinese) [21] JTG D 60−2015, 公路桥涵设计通用规范[S]. 北京: 人民交通出版社, 2015.JTG D 60−2015, General specifications for design of highway bridges and culverts [S]. Beijing: China Communications Press, 2015. (in Chinese) [22] JTG 3362−2018, 公路钢筋混凝土及预应力混凝土桥涵设计规范[S]. 北京: 人民交通出版社, 2018.JTG 3362−2018, Specifications for design of highway reinforced concrete and prestressed concrete bridges and culverts [S]. Beijing: China Communications Press, 2018. (in Chinese) [23] Wille K, El-Tawil S, Naaman A. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading [J]. Cement and Concrete Composites, 2014(48): 53 − 66. [24] Naaman A, Reinhardt H. Proposed classification of HPFRC composites based on their tensile response [J]. Materials and Structures, 2006, 39(5): 547 − 555. [25] Model Code 2010, The fib model code for concrete structures [S]. Berlin: Wilhelm Ernst & Sohn, 2010. [26] GB 50010−2010, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010.GB 50010−2010, Code for design of concrete structures [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese) [27] ABAQUS user's manual [M]. Version 6.14. Providence, RI, USA: Dassault Systèmes Simulia Corp, 2014. [28] 聂建国, 王宇航. ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J]. 工程力学, 2013, 30(4): 59 − 67, 82.Nie Jianguo, Wang Yuhang. Comparative study of constitutive model of concrete in ABAQUS for static analysis of structures [J]. Engineering Mechanics, 2013, 30(4): 59 − 67, 82. (in Chinese) [29] Genikomsou A S, Polak M A. Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS [J]. Engineering Structures, 2015, 98: 38 − 48. doi: 10.1016/j.engstruct.2015.04.016 [30] Esmaeily A, Xiao Y. Behavior of reinforced concrete columns under variable axial loads: Analysis [J]. ACI Structural Journal, 2005, 102(5): 736 − 744. [31] 陶慕轩. 钢-混凝土组合框架结构体系的楼板空间组合效应 [D]. 北京: 清华大学, 2012.Tao Muxuan. Slab spatial composite effect of steel-concrete composite frame structural systems [D]. Beijing: Tsinghua University, 2012. (in Chinese) [32] Ollgaard J G, Slutter R G, Fisher J W. Shear strength of stud connectors in lightweight and normal weight concrete [J]. AISC Engineering Journal, 1971, 8(2): 495 − 506. [33] Nie J, Fan J, Cai C S. Stiffness and deflection of steel–concrete composite beams under negative bending [J]. Journal of Structural Engineering, 2004, 130(11): 1842 − 1851. doi: 10.1061/(ASCE)0733-9445(2004)130:11(1842) [34] Lubliner J, Oliver J, Oller S, Onate E. A plastic-damage model for concrete [J]. International Journal of Solids and Structures, 1989, 25(3): 299 − 326. doi: 10.1016/0020-7683(89)90050-4 [35] Krahl P, Gidrao G, Carrazedo R. Compressive behavior of UHPFRC under quasi-static and seismic strain rates considering the effect of fiber content [J]. Construction and Building Materials, 2018, 188: 633 − 644. doi: 10.1016/j.conbuildmat.2018.08.121 [36] Wu F, Xu L, Chi Y, et al. Compressive and flexural properties of ultra-high performance fiber-reinforced cementitious composite: The effect of coarse aggregate [J]. Composite Structures, 2020, 236: 111810. doi: 10.1016/j.compstruct.2019.111810 [37] Naeimi N, Moustafa M. Analytical stress–strain model for steel spirals-confined UHPC [J]. Composites Part C, 2021, 5: 100130. [38] Naeimi N, Moustafa M. Compressive behavior and stress-strain relationships of confined and unconfined UHPC [J]. Construction and Building Materials, 2021, 272: 121844. doi: 10.1016/j.conbuildmat.2020.121844 -