留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢-超高性能混凝土组合箱梁静力性能试验研究与数值模拟

杨松 陈钒 齐兵 赵国军 王哲 樊健生 丁然 韩玉珍

杨松, 陈钒, 齐兵, 赵国军, 王哲, 樊健生, 丁然, 韩玉珍. 钢-超高性能混凝土组合箱梁静力性能试验研究与数值模拟[J]. 工程力学, 2022, 39(8): 88-102. doi: 10.6052/j.issn.1000-4750.2021.04.0290
引用本文: 杨松, 陈钒, 齐兵, 赵国军, 王哲, 樊健生, 丁然, 韩玉珍. 钢-超高性能混凝土组合箱梁静力性能试验研究与数值模拟[J]. 工程力学, 2022, 39(8): 88-102. doi: 10.6052/j.issn.1000-4750.2021.04.0290
YANG Song, CHEN Fan, QI Bing, ZHAO Guo-jun, WANG Zhe, FAN Jian-sheng, DING Ran, HAN Yu-zhen. EXPERIMENTAL AND NUMERICAL RESEARCH ON STATIC PERFORMANCE OF STEEL-UHPC COMPOSITE BOX GIRDER[J]. Engineering Mechanics, 2022, 39(8): 88-102. doi: 10.6052/j.issn.1000-4750.2021.04.0290
Citation: YANG Song, CHEN Fan, QI Bing, ZHAO Guo-jun, WANG Zhe, FAN Jian-sheng, DING Ran, HAN Yu-zhen. EXPERIMENTAL AND NUMERICAL RESEARCH ON STATIC PERFORMANCE OF STEEL-UHPC COMPOSITE BOX GIRDER[J]. Engineering Mechanics, 2022, 39(8): 88-102. doi: 10.6052/j.issn.1000-4750.2021.04.0290

钢-超高性能混凝土组合箱梁静力性能试验研究与数值模拟

doi: 10.6052/j.issn.1000-4750.2021.04.0290
基金项目: 国家自然科学基金项目(51890903);中电建路桥集团有限公司科研项目(HHZ-JGY-FW-07)
详细信息
    作者简介:

    杨 松 (1980−),男,贵州人,高工,博士生,主要从事工程结构研究 (E-mail: yangsong277@126.com)

    陈 钒 (1972−),男,江西人,教授级高工,博士,主要从事隧道工程稳定性研究 (E-mail: 737123124@qq.com)

    齐 兵 (1987−),男,北京人,工程师,硕士,主要从事工程管理方面的研究 (E-mail: 1246539575@qq.com)

    赵国军 (1984−),男,湖北人,高工,学士,主要从事隧道工程稳定性研究 (E-mail: 54882805@qq.com)

    王 哲 (1992−),男,天津人,博士生,主要从事组合结构研究 (E-mail: wang305856596@163.com)

    樊健生 (1975−),男,山东人,教授,博士,博导,主要从事组合结构教学与研究 (E-mail: fanjsh@tsinghua.edu.cn)

    韩玉珍 (1982−),女,河南人,高工,博士,主要从事结构工程研究 (E-mail: hanyuzhen@bjucd.com)

    通讯作者:

    丁 然 (1988−),男,安徽人,助理研究员,博士,主要从事结构工程研究 (E-mail: dingran@mail.tsinghua.edu.cn)

  • 中图分类号: U443.32

EXPERIMENTAL AND NUMERICAL RESEARCH ON STATIC PERFORMANCE OF STEEL-UHPC COMPOSITE BOX GIRDER

  • 摘要: 以云南红河特大桥为工程背景,设计2个钢-超高性能混凝土(ultra-high performance concrete,UHPC)组合箱梁节段模型试验,主要关注组合箱梁的承载力、破坏模式和抗裂性能等。基于通用有限元软件ABAQUS建立组合箱梁的精细有限元模型,通过试验结果验证模型并开展参数分析,研究UHPC板厚度、配筋率、栓钉间距以及箱梁横隔板厚度对组合箱梁受力性能的影响,给出各参数的设计建议取值范围。研究结果表明:钢-UHPC组合箱梁承载力高、抗裂性能好;按最大裂缝宽度进行验算,等效为180 mm厚UHPC桥面板的承载力超过车辆荷载标准值的8倍;UHPC板厚度以及钢箱梁横隔板厚度对组合箱梁破坏模式影响较大;综合考虑经济性及受力性能,建议实际工程中UHPC桥面板厚度不宜超过210 mm,配筋率不宜超过1.4%,栓钉间距最大不超过450 mm。
  • 图  1  试件设计[6] /mm

    Figure  1.  Test specimen design

    图  2  加载装置

    Figure  2.  Loading apparatus

    图  3  测点布置方案俯视图 /mm

    Figure  3.  Arrangement of measurement devices

    图  4  荷载-挠度曲线

    Figure  4.  Load-deflection curves

    图  5  CDS-1破坏模式

    Figure  5.  Failure pattern of CDS-1

    图  6  CDS-2破坏模式

    Figure  6.  Failure pattern of CDS-2

    图  7  荷载-最大裂缝宽度曲线

    Figure  7.  Load-maximum crack width curve

    图  8  荷载-UHPC板顶压应变曲线

    Figure  8.  Load-compressive strain curve of UHPC at slab top

    图  9  钢筋及钢板本构关系

    Figure  9.  Constitutive relation of rebar and steel plate

    图  10  有限元模型网格测试

    Figure  10.  Mesh test of FEM

    图  11  有限元模型网格

    Figure  11.  Mesh of FEM

    图  12  荷载-挠度曲线对比

    Figure  12.  Comparison of load-deflection curves

    图  13  CDS-1有限元分析的破坏模式

    Figure  13.  Failure pattern predicted by FEM for CDS-1

    图  14  CDS-2有限元分析的破坏模式

    Figure  14.  Failure pattern predicted by FEM for CDS-2

    图  15  破坏模式随UHPC板厚度、配筋率变化情况

    Figure  15.  Failure pattern with different thicknesses and reinforcement ratios of UHPC slab

    图  16  破坏模式随UHPC板厚度、栓钉间距变化情况

    Figure  16.  Failure pattern with different thicknesses of UHPC slab and stud spacings

    图  17  破坏模式随UHPC板厚度、横隔板厚度变化情况

    Figure  17.  Failure pattern with different thicknesses of UHPC slab and diaphragm thicknesses

    图  18  极限承载力随UHPC板厚度、配筋率变化情况

    Figure  18.  Ultimate capacity with different thicknesses and reinforcement ratios of UHPC slab

    图  19  极限承载力随UHPC板厚度、栓钉间距变化情况

    Figure  19.  Ultimate capacity with different UHPC slab thicknesses and stud spacings

    图  20  极限承载力随UHPC板厚度、横隔板厚度变化情况

    Figure  20.  Ultimate capacity with different UHPC slab thicknesses and diaphragm thicknesses

    图  21  UHPC板挠度随UHPC板厚度、配筋率变化情况

    Figure  21.  Deflection of UHPC slab with different UHPC slab thicknesses and reinforcement ratios

    图  22  UHPC板挠度随UHPC板厚度、配筋率变化情况

    Figure  22.  Deflection of UHPC slab with different UHPC slab thicknesses and reinforcement ratios

    图  23  UHPC板挠度随UHPC板厚度、栓钉间距变化情况

    Figure  23.  Deflection of UHPC slab with different UHPC slab thicknesses and stud spacings

    图  24  钢梁挠度随UHPC板厚度、配筋率变化情况

    Figure  24.  Deflection of steel beam with different UHPC slab thicknesses and reinforcement ratios

    图  25  钢梁挠度随UHPC板厚度、栓钉间距变化情况

    Figure  25.  Deflection of steel beam with different UHPC slab thickness and stud spacing

    图  26  钢梁挠度随UHPC板厚度、钢梁横隔板厚度变化情况

    Figure  26.  Deflection of steel beam with different UHPC slab thicknesses and diaphragm thicknesses

    表  1  试验主要结果

    Table  1.   Main results of tests

    试件编号Pu/kNΔcu/mmΔsu/mm
    CDS-11571.522.71.3
    CDS-22636.015.82.1
    注:Pu为极限承载力;ΔcuΔsu分别为达到极限承载力时的UHPC板顶跨中中点挠度和钢梁跨中挠度。
    下载: 导出CSV

    表  2  理论模型的主要结果

    Table  2.   Main results of theoretical model

    试件编号Pu/kNPFEA/kNPFEA/PuΔcu/mmΔFEA/mmΔFEA/Δcu
    CDS-11571.51535.70.9822.720.50.90
    CDS-22636.02685.21.0215.817.01.08
    注:Pu为极限承载力;PFEA为精细有限元模型极限承载力;ΔFEA为精细有限元模型达到极限承载力时的挠度。
    下载: 导出CSV
  • [1] 聂建国, 陶慕轩, 吴丽丽, 等. 钢-混凝土组合结构桥梁研究新进展[J]. 土木工程学报, 2012, 45(6): 110 − 122.

    Nie Jianguo, Tao Muxuan, Wu Lili, et al. Advances of research on steel-concrete composite bridges [J]. China Civil Engineering Journal, 2012, 45(6): 110 − 122. (in Chinese)
    [2] 王春生, 付炳宁, 张芹, 等. 正交异性钢桥面板足尺疲劳试验[J]. 中国公路学报, 2013, 26(2): 69 − 76. doi: 10.3969/j.issn.1001-7372.2013.02.011

    Wang Chunsheng, Fu Bingning, Zhang Qin, et al. Fatigue test on full-scale orthotropic steel bridge deck [J]. China Journal of Highway and Transport, 2013, 26(2): 69 − 76. (in Chinese) doi: 10.3969/j.issn.1001-7372.2013.02.011
    [3] 唐亮, 黄李骥, 刘高, 等. 正交异性钢桥面板足尺模型疲劳试验[J]. 土木工程学报, 2014, 47(3): 112 − 122.

    Tang Liang, Huang Liji, Liu Gao, et al. Fatigue experimental study of a full-scale steel orthotropic deck model [J]. China Civil Engineering Journal, 2014, 47(3): 112 − 122. (in Chinese)
    [4] 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2014[J]. 中国公路学报, 2014, 27(5): 1 − 96. doi: 10.3969/j.issn.1001-7372.2014.05.001

    Editorial Department of China Journal of Highway and Transport. Review on China's bridge engineering research: 2014 [J]. China Journal of Highway and Transport, 2014, 27(5): 1 − 96. (in Chinese) doi: 10.3969/j.issn.1001-7372.2014.05.001
    [5] Russell H G, Graybeal B A. Ultra-high performance concrete: A state-of-the-art report for the bridge community [R]. United States: Federal Highway Administration, Office of Infrastructure Research and Development, 2013.
    [6] 樊健生, 王哲, 杨松, 陈钒, 丁然. 钢-超高性能混凝土组合箱梁弹性弯曲性能试验研究及解析解[J]. 工程力学, 2020, 37(11): 36 − 46. doi: 10.6052/j.issn.1000-4750.2019.11.0700

    Fan Jiansheng, Wang Zhe, Yang Song, Chen Fan, Ding Ran. Experimental study on and analytical solution of the elastic bending behavior of steel-UHPC composite box girders [J]. Engineering Mechanics, 2020, 37(11): 36 − 46. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.11.0700
    [7] 孙启力, 路新瀛, 聂鑫, 韩治健, 樊健生. 非蒸养UHPC-钢板结构界面的受拉和剪切性能试验研究[J]. 工程力学, 2017, 34(9): 167 − 174, 192. doi: 10.6052/j.issn.1000-4750.2016.05.0361

    Sun Qili, Lu Xinying, Nie Xin, Han Zhijian, Fan Jiansheng. Experimental research on tensile and shear behaviour of the interface between non-steam-cured UHPC and steel plate structure [J]. Engineering Mechanics, 2017, 34(9): 167 − 174, 192. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.05.0361
    [8] 樊健生, 王哲, 杨松, 陈钒, 丁然. 超高性能混凝土板冲切与弯曲性能研究[J]. 工程力学, 2021, 38(4): 30 − 43. doi: 10.6052/j.issn.1000-4750.2020.06.0349

    Fan Jiansheng, Wang Zhe, Yang Song, Chen Fan, Ding Ran. Research on punching shear and bending behavior of ultra-high performance concrete slabs [J]. Engineering Mechanics, 2021, 38(4): 30 − 43. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0349
    [9] Buitelaar P, Braam R, Kaptijn N. Reinforced high performance concrete overlay system for rehabilitation and strengthening of orthotropic steel bridge decks [C]// Orthotropic Bridge Conference. Sacramento, USA, 2004: 384 − 401.
    [10] Yang Y, Walraven J, den Uijl J. Study on bending behavior of an UHPC overlay on a steel orthotropic deck [C]// Second International Symposium on Ultra High Performance Concrete. Kassel, Germany, 2008: 639 − 636.
    [11] Shao X, Yi D, Huang Z, et al. Basic performance of the composite deck system composed of orthotropic steel deck and ultrathin RPC layer [J]. Journal of Bridge Engineering, 2011, 18(5): 417 − 428.
    [12] 邵旭东, 罗军, 曹君辉, 等. 钢-UHPC轻型组合桥面结构试验及裂缝宽度计算研究[J]. 土木工程学报, 2019, 52(3): 61 − 75.

    Shao Xudong, Luo Jun, Cao Junhui, et al. Experimental study and crack width calculation of steel-UHPC lightweight composite deck structure [J]. China Civil Engineering Journal, 2019, 52(3): 61 − 75. (in Chinese)
    [13] 刘梦麟, 邵旭东, 张哲, 等. 正交异性钢板-超薄RPC组合桥面板结构的抗弯疲劳性能试验[J]. 公路交通科技, 2012, 29(10): 46 − 53. doi: 10.3969/j.issn.1002-0268.2012.10.009

    Liu Menglin, Shao Xudong, Zhang Zhe, et al. Experiment on flexural fatigue performance of composite deck system composed of orthotropic steel deck and ultra-thin RPC layer [J]. Journal of Highway and Transportation Research and Development, 2012, 29(10): 46 − 53. (in Chinese) doi: 10.3969/j.issn.1002-0268.2012.10.009
    [14] 田启贤, 高立强, 周尚猛, 等. 超高性能混凝土-钢正交异性板组合桥面试验研究[J]. 桥梁建设, 2019, 49(增刊 1): 13 − 19.

    Tian Qixian, Gao Liqiang, Zhou Shangmeng, et al. Research of composite bridge deck system with UHPC and orthotropic steel plate [J]. Bridge Construction, 2019, 49(Suppl 1): 13 − 19. (in Chinese)
    [15] Yuan Y, Wu C, Jiang X. Experimental study on the fatigue behavior of the orthotropic steel deck rehabilitated by UHPC overlay [J]. Journal of Constructional Steel Research, 2019, 157: 1 − 9. doi: 10.1016/j.jcsr.2019.02.010
    [16] 刘诚, 樊健生, 聂建国, 等. 钢-超高性能混凝土组合桥面系中栓钉连接件的疲劳性能研究[J]. 中国公路学报, 2017, 30(3): 139 − 146. doi: 10.3969/j.issn.1001-7372.2017.03.015

    Liu Cheng, Fan Jiansheng, Nie Jianguo, et al. Fatigue performance research of headed studs in steel and ultra-high performance concrete composite deck [J]. China Journal of Highway and Transport, 2017, 30(3): 139 − 146. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.03.015
    [17] Wang Z, Nie X, Fan J S, et al. Experimental and numerical investigation of the interfacial properties of non-steam-cured UHPC-steel composite beams [J]. Construction and Building Materials, 2019, 195: 323 − 339. doi: 10.1016/j.conbuildmat.2018.11.057
    [18] Pan W, Fan J, Nie J, et al. Experimental study on tensile behavior of wet joints in a prefabricated composite deck system composed of orthotropic steel deck and ultrathin reactive-powder concrete layer [J]. Journal of Bridge Engineering, 2016, 21(10): 04016064. doi: 10.1061/(ASCE)BE.1943-5592.0000935
    [19] 陈德宝, 曾明根, 苏庆田, 等. 钢-UHPC组合桥面板湿接缝界面处理方式[J]. 中国公路学报, 2018, 31(12): 154 − 162. doi: 10.3969/j.issn.1001-7372.2018.12.015

    Chen Debao, Zeng Minggen, Su Qingtian, et al. Interfacial treatment measures of wet joints in composite bridge deck composed of steel and UHPC layer [J]. China Journal of Highway and Transport, 2018, 31(12): 154 − 162. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.12.015
    [20] T/CBMF 37−2018, T/CCPA 7−2018, 超高性能混凝土基本性能与试验方法[S]. 北京: 中国建材工业出版社, 2018.

    T/CBMF 37−2018, T/CCPA 7−2018, Ultra-high performance concrete-basic performance and test method [S]. Beijing: China Building Materials Press, 2018. (in Chinese)
    [21] JTG D 60−2015, 公路桥涵设计通用规范[S]. 北京: 人民交通出版社, 2015.

    JTG D 60−2015, General specifications for design of highway bridges and culverts [S]. Beijing: China Communications Press, 2015. (in Chinese)
    [22] JTG 3362−2018, 公路钢筋混凝土及预应力混凝土桥涵设计规范[S]. 北京: 人民交通出版社, 2018.

    JTG 3362−2018, Specifications for design of highway reinforced concrete and prestressed concrete bridges and culverts [S]. Beijing: China Communications Press, 2018. (in Chinese)
    [23] Wille K, El-Tawil S, Naaman A. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading [J]. Cement and Concrete Composites, 2014(48): 53 − 66.
    [24] Naaman A, Reinhardt H. Proposed classification of HPFRC composites based on their tensile response [J]. Materials and Structures, 2006, 39(5): 547 − 555.
    [25] Model Code 2010, The fib model code for concrete structures [S]. Berlin: Wilhelm Ernst & Sohn, 2010.
    [26] GB 50010−2010, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010.

    GB 50010−2010, Code for design of concrete structures [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)
    [27] ABAQUS user's manual [M]. Version 6.14. Providence, RI, USA: Dassault Systèmes Simulia Corp, 2014.
    [28] 聂建国, 王宇航. ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J]. 工程力学, 2013, 30(4): 59 − 67, 82.

    Nie Jianguo, Wang Yuhang. Comparative study of constitutive model of concrete in ABAQUS for static analysis of structures [J]. Engineering Mechanics, 2013, 30(4): 59 − 67, 82. (in Chinese)
    [29] Genikomsou A S, Polak M A. Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS [J]. Engineering Structures, 2015, 98: 38 − 48. doi: 10.1016/j.engstruct.2015.04.016
    [30] Esmaeily A, Xiao Y. Behavior of reinforced concrete columns under variable axial loads: Analysis [J]. ACI Structural Journal, 2005, 102(5): 736 − 744.
    [31] 陶慕轩. 钢-混凝土组合框架结构体系的楼板空间组合效应 [D]. 北京: 清华大学, 2012.

    Tao Muxuan. Slab spatial composite effect of steel-concrete composite frame structural systems [D]. Beijing: Tsinghua University, 2012. (in Chinese)
    [32] Ollgaard J G, Slutter R G, Fisher J W. Shear strength of stud connectors in lightweight and normal weight concrete [J]. AISC Engineering Journal, 1971, 8(2): 495 − 506.
    [33] Nie J, Fan J, Cai C S. Stiffness and deflection of steel–concrete composite beams under negative bending [J]. Journal of Structural Engineering, 2004, 130(11): 1842 − 1851. doi: 10.1061/(ASCE)0733-9445(2004)130:11(1842)
    [34] Lubliner J, Oliver J, Oller S, Onate E. A plastic-damage model for concrete [J]. International Journal of Solids and Structures, 1989, 25(3): 299 − 326. doi: 10.1016/0020-7683(89)90050-4
    [35] Krahl P, Gidrao G, Carrazedo R. Compressive behavior of UHPFRC under quasi-static and seismic strain rates considering the effect of fiber content [J]. Construction and Building Materials, 2018, 188: 633 − 644. doi: 10.1016/j.conbuildmat.2018.08.121
    [36] Wu F, Xu L, Chi Y, et al. Compressive and flexural properties of ultra-high performance fiber-reinforced cementitious composite: The effect of coarse aggregate [J]. Composite Structures, 2020, 236: 111810. doi: 10.1016/j.compstruct.2019.111810
    [37] Naeimi N, Moustafa M. Analytical stress–strain model for steel spirals-confined UHPC [J]. Composites Part C, 2021, 5: 100130.
    [38] Naeimi N, Moustafa M. Compressive behavior and stress-strain relationships of confined and unconfined UHPC [J]. Construction and Building Materials, 2021, 272: 121844. doi: 10.1016/j.conbuildmat.2020.121844
  • 加载中
图(28) / 表(2)
计量
  • 文章访问数:  293
  • HTML全文浏览量:  105
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-17
  • 修回日期:  2021-07-04
  • 网络出版日期:  2021-08-06
  • 刊出日期:  2022-08-01

目录

    /

    返回文章
    返回