留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑温度效应的软土固结蠕变耦合模型

邓岳保 毛伟赟 俞磊 朱瑶宏 谢康和

邓岳保, 毛伟赟, 俞磊, 朱瑶宏, 谢康和. 考虑温度效应的软土固结蠕变耦合模型[J]. 工程力学, 2022, 39(8): 103-113. doi: 10.6052/j.issn.1000-4750.2021.04.0292
引用本文: 邓岳保, 毛伟赟, 俞磊, 朱瑶宏, 谢康和. 考虑温度效应的软土固结蠕变耦合模型[J]. 工程力学, 2022, 39(8): 103-113. doi: 10.6052/j.issn.1000-4750.2021.04.0292
DENG Yue-bao, MAO Wei-yun, YU Lei, ZHU Yao-hong, XIE Kang-he. CONSOLIDATION AND CREEP COUPLING MODEL FOR SOFT SOIL CONSIDERING TEMPERATURE EFFECT[J]. Engineering Mechanics, 2022, 39(8): 103-113. doi: 10.6052/j.issn.1000-4750.2021.04.0292
Citation: DENG Yue-bao, MAO Wei-yun, YU Lei, ZHU Yao-hong, XIE Kang-he. CONSOLIDATION AND CREEP COUPLING MODEL FOR SOFT SOIL CONSIDERING TEMPERATURE EFFECT[J]. Engineering Mechanics, 2022, 39(8): 103-113. doi: 10.6052/j.issn.1000-4750.2021.04.0292

考虑温度效应的软土固结蠕变耦合模型

doi: 10.6052/j.issn.1000-4750.2021.04.0292
基金项目: 浙江省自然科学基金项目(LGG21E080005);国家自然科学基金项目(51778303)
详细信息
    作者简介:

    毛伟赟(1995−),男,江西上饶人,硕士生,从事温度效应的软土特性研究(E-mail: 867057284@qq.com)

    俞 磊(1997−),男,浙江宁波人,硕士生,从事软土特性和能源桩研究(E-mail: 121501192@qq.com)

    朱瑶宏(1960−),男,浙江宁波人,教授,硕士,从事轨道交通与地下结构工程研究(Email: zhuyaohong@nbu.edu.cn)

    谢康和(1956−),男,浙江杭州人,教授,博士,从事土力学教学和固结理论研究(E-mail: zdkhxie@zju.edu.cn)

    通讯作者:

    邓岳保(1983−),男,湖南岳阳人,教授,博士,从事软土特性和软基处理方面的教学和研究(E-mail: dengyuebao@nbu.edu.cn)

  • 中图分类号: TU447

CONSOLIDATION AND CREEP COUPLING MODEL FOR SOFT SOIL CONSIDERING TEMPERATURE EFFECT

  • 摘要: 软土的固结蠕变是软土地基及构筑物长期变形和稳定性的重要影响因素。在涉热岩土工程兴起和逐渐发展的背景下,研究软土在热力耦合作用下的固结蠕变特性并建立力学模型,对于评估涉热工程软土场地长期变形及稳定性具有重要意义。对此,针对典型滨海软土开展热固结蠕变试验,得到热固结蠕变特性及相关参数取值,建立考虑温度效应的固结蠕变经验公式。结合弹黏塑性理论和热固结理论,推导考虑温度效应的固结蠕变耦合力学模型。在合理性验证基础之上开展算例分析,结果表明:新型热固结蠕变耦合模型能反映土体变形的弹性、塑性、黏性和热胀冷缩属性,能描述土体的热孔压、热回弹和热沉降现象,还能分析软土长期变形的温度效应和时间效应;该成果为软土场地涉热岩土工程问题分析提供了可供参考的理论基础。
  • 图  1  高级温控固结仪试验系统

    Figure  1.  Advanced temperature control consolidation test instrument

    图  2  温度和应力水平对次固结系数的影响

    Figure  2.  The effects of temperature and vertical pressure on the coefficient of secondary compression

    图  3  不同OCR情况下热膨胀系数随应力水平变化

    Figure  3.  Variation of thermal expansion coefficient with stress level under different OCR

    图  4  加热温度对软土固结压缩的影响[24]

    Figure  4.  The influence of heating temperature on the consolidation of soft soil

    图  5  不同温度下软土的ep曲线试验值和计算值

    Figure  5.  Test and calculated ep curves under different T conditions

    图  6  不同温度下的Δet曲线试验值和计算值(p=200 kPa)

    Figure  6.  Test and calculated Δet curve under different temperature conditions (p=200 kPa)

    图  7  不同温度下的应变-时间曲线

    Figure  7.  Strain-time curves under different temperature conditions

    图  8  温度变化曲线

    Figure  8.  Variation of temperature with time

    图  9  孔压变化曲线

    Figure  9.  Variation of excess pore water pressure

    图  10  固结度曲线

    Figure  10.  Curves of degree of consolidation

    图  11  线性变温下应变变化曲线

    Figure  11.  Stress-strain curves under linear variation of temperature

    表  1  试验土样基本物理指标

    Table  1.   Basic physical properties of test soil

    比重
    密度
    /(g/cm3)
    含水率
    /(%)
    塑限
    /(%)
    液限
    /(%)
    孔隙比
    2.711.78538.424.039.51.10
    下载: 导出CSV

    表  2  土样试验方案

    Table  2.   Soil sample test program

    系列号土样号OCR温度/(℃)荷载 /kPa
    系列11-1126(室温)25~200
    1-213625~200
    1-314625~200
    1-415625~200
    系列22-1126~5625~400
    2-2226~5625~400
    2-3426~5625~400
    2-41026~5625~400
    下载: 导出CSV

    表  3  计算参数及其取值

    Table  3.   Parameters and their values

    参数取值参数取值
    T0/(℃)26αT100/(℃−1)1.5×10−5
    OCR1a0.105
    e01.10b0.15
    pc/kPa95c1.0
    cv/(×10−4 cm2/s)6.58αf/(℃−1)4.5×10−4
    Cc0.345αs/(℃−1)3.0×10−5
    Ce0.045αst/(℃−1)3.0×10−5
    γ0.382nv0.55
    Α0.0021mv/MPa−10.50
    Β0.0032ΔT/(℃)0~30
    下载: 导出CSV
  • [1] 殷建华. 从本构模型研究到试验和光纤监测技术研发[J]. 岩土工程学报, 2011, 33(1): 1 − 15.

    Yin Jianhua. From constitutive modeling to development of laboratory testing and optical fiber sensor monitoring technologies [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 1 − 15. (in Chinese)
    [2] 任鹏, 王鹏, 张华, 等. 黏土蠕变非线性特性及其分数阶导数蠕变模型[J]. 工程力学, 2020, 37(9): 153 − 160, 207. doi: 10.6052/j.issn.1000-4750.2019.10.0624

    Ren Peng, Wang Peng, Zhang Hua, et al. Nonlinear behavior of clay creep and its fractional derivative creep model [J]. Engineering Mechanics, 2020, 37(9): 153 − 160, 207. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.10.0624
    [3] 陈晓平, 白世伟. 软土蠕变-固结特性及计算模型研究[J]. 岩石力学与工程学报, 2003, 22(5): 728 − 734. doi: 10.3321/j.issn:1000-6915.2003.05.008

    Chen Xiaoping, Bai Shiwei. Research on creep-consolidation characteristics and calculation model of soft soil [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(5): 728 − 734. (in Chinese) doi: 10.3321/j.issn:1000-6915.2003.05.008
    [4] 陈昌富, 朱世民, 毛凤山, 等. 红黏土固结-蠕变特性及其耦合模型[J]. 工程地质学报, 2019, 27(4): 723 − 728.

    Chen Changfu, Zhu Shimin, Mao Fengshan, et al. Characterization and modeling of coupled consolidation- creep behavior of red clay [J]. Journal of Engineering Geology, 2019, 27(4): 723 − 728. (in Chinese)
    [5] 吕塞·拉卢伊, 何莉塞·迪·唐纳. 能源地下结构[M]. 孔纲强, 译. 北京: 中国建筑工业出版社, 2016.

    Laloui L, Di Donna A. Energy geostructures: innovation in underground engineering [M]. Kong Gangqiang, translate. Beijing: China Architecture & Building Press, 2016. (in Chinese)
    [6] 夏才初, 张国柱, 孙猛. 能源地下结构的理论与应用-地下结构内埋管地源热泵系统[M]. 上海: 同济大学出版社, 2015.

    Xia Caichu, Zhang Guozhu, Sun Meng. Theory and application of energy underground structure-buried pipe ground source heat pump system in underground structure [M]. Shanghai: Tongji University Press, 2015. (in Chinese)
    [7] JGJ/T 438−2018, 中华人民共和国住房与城乡建设部桩基地热能利用技术标准[S]. 北京: 中国建筑工业出版社, 2018.

    JGJ/T 438−2018, Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical standard for utilization of geothermal energy through piles [S]. Beijing: China Architecture & Building Press, 2018. (in Chinese)
    [8] 卜宜顺, 杨圣奇, 黄彦华. 温度和损伤程度对砂岩渗透特性影响的试验研究[J]. 工程力学, 2021, 38(5): 122 − 130. doi: 10.6052/j.issn.1000-4750.2020.06.0374

    Bu Yishun, Yang Shengqi, Huang Yanhua. Experimental study on the influence of temperature and damage degree on the permeability of sandstone [J]. Engineering Mechanics, 2021, 38(5): 122 − 130. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0374
    [9] 赵志宏, 刘桂宏, 徐浩然. 深地能源工程热水力多场耦合效应高效模拟方法[J]. 工程力学, 2020, 37(6): 1 − 18.

    Zhao Zhihong, Liu Guihong, Xu Haoran. A robust numearical modeling framework for coupled thermo- hydro-mechanical process in deep geo-energy engineering [J]. Engineering Mechanics, 2020, 37(6): 1 − 18. (in Chinese)
    [10] 郭华, 刘干斌, 郑荣跃, 等. 基于Merchant模型的饱和土体热固结理论研究[J]. 岩石力学与工程学报, 2018, 37(6): 1489 − 1495.

    Guo Hua, Liu Ganbin, Zheng Rongyue, et al. Thermal consolidation theory of saturated soils based on Merchant model [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1489 − 1495. (in Chinese)
    [11] Coccia C J R, McCartney J S. Thermal volume change of poorly draining soils II: Model development and experimental validation [J]. Computers and Geotechnics, 2016, 80: 16 − 25. doi: 10.1016/j.compgeo.2016.06.010
    [12] Cui Y J, Le T T, Tang A M, et al. Investigating the time-dependent behavior of Boom clay under thermomechanical loading [J]. Geotechnique, 2009, 59(4): 319 − 329. doi: 10.1680/geot.2009.59.4.319
    [13] Laloui L, Francois B. ACMEG-T: soil thermos-plasticity model [J]. Journal of Engineering Mechanics, ASCE, 2009, 135(9): 932 − 944. doi: 10.1061/(ASCE)EM.1943-7889.0000011
    [14] Laloui L, Leroueil S, Chalindar S. Modeling the combined effect of strain rate and temperature on one- dimensional compression of soils [J]. Canadian Geotechnical Journal, 2008, 45(12): 1765 − 1777. doi: 10.1139/T08-093
    [15] Di Donna A, Laloui L. Response of soil subjected to thermal cyclic loading: Experimental and constitutive study [J]. Engineering Geology, 2015, 190: 65 − 76. doi: 10.1016/j.enggeo.2015.03.003
    [16] Zhang S, Zhang F. A thermo-elasto-viscoplastic model for soft sedimentary rock [J]. Soils and Foundations, 2009, 49(4): 583 − 595. doi: 10.3208/sandf.49.583
    [17] 姚仰平. UH模型系列研究[J]. 岩土工程学报, 2015, 37(2): 193 − 217.

    Yao Yangping. Advanced UH models for soils [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 193 − 217. (in Chinese)
    [18] Wang L Z, Wang K J, Hong Y. Modeling temperature- dependent behavior of soft clays [J]. Journal of Engineering Mechanics, 2016, 142(8): 04016054. doi: 10.1061/(ASCE)EM.1943-7889.0001108
    [19] 程晓辉, 陈志辉. 纯主应力旋转条件下饱和黏土累积变形的热力学模型分析[J]. 岩土工程学报, 2015, 37(9): 1581 − 1590. doi: 10.11779/CJGE201509004

    Cheng Xiaohui, Chen Zhihui. Thermodynamic modeling of accumulated deformation of saturated clays under pure principal stress rotation [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1581 − 1590. (in Chinese) doi: 10.11779/CJGE201509004
    [20] 陈志辉, 程晓辉. 饱和土体固结压缩和蠕变的热力学本构理论及模型分析[J]. 岩土工程学报, 2014, 36(3): 489 − 498. doi: 10.11779/CJGE201403012

    Chen Zhihui, Cheng Xiaohui. Thermodynamic constitutive theory and analysis of consolidation compression and creep of saturated soils [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 489 − 498. (in Chinese) doi: 10.11779/CJGE201403012
    [21] Bai B, Yang G C, Li T, Yang G S. A thermodynamic constitutive model with temperature effect based on particle rearrangement for geomaterials [J]. Mechanics of Materials, 2019, 139: 103180. doi: 10.1016/j.mechmat.2019.103180
    [22] Leroueil S. The isotache approach. Where are we 50 years after its development by Professor Šuklje? (2006 Prof. Šuklje’s Memorial Lecture) [C]. Ljubljana, Slovenia: Proceedings of the 13th Danube-European Conference on Geotechnical Engineering, Vol. 1. Ljubljana, 2006: 55 − 88.
    [23] Liu Q, Deng Y B, Wang T Y. One-dimensional nonlinear consolidation theory for soft ground considering secondary consolidation and the thermal effect [J]. Computers and Geotechnics, 2018, 104: 22 − 28. doi: 10.1016/j.compgeo.2018.08.007
    [24] 邓岳保, 王天园, 孔纲强. 考虑温度效应的饱和土地基固结理论[J]. 岩土工程学报, 2019, 41(10): 1827 − 1835.

    Deng Yuebao, Wang Tianyuan, Kong Gangqiang. Consolidation theory for saturated ground considering temperature effects [J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1827 − 1835. (in Chinese)
    [25] 邓岳保, 毛伟赟, 孔纲强, 等. 考虑温度影响的饱和土有效应力原理[J]. 清华大学学报(自然科学版), 2020, 60(9): 726 − 732.

    Deng Yuebao, Mao Weiyun, Kong Gangqiang, et al. Effective stress principle in saturated soil with the effect of temperature [J]. Journal Tsinghua University (Science & Technology), 2020, 60(9): 726 − 732. (in Chinese)
    [26] 陶海冰. 热流固作用下软土静动力学特性及应用[D]. 杭州: 浙江大学, 2015.

    Tao Haibing. The thermo-hydro- mechanical effect on static and dynamic properties of soft soil and its application [D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
    [27] 王宽君. 软土性状的温度效应[D]. 杭州: 浙江大学, 2017.

    Wang Kuanjun. Temperature dependent behavior of soft soils [D]. Hangzhou: Zhejiang University, 2017. (in Chinese)
    [28] Abuel-Naga H M, Bergado D T, Bouazza A, et al. Volume change behaviour of saturated clays under drained heating conditions: experimental results and constitutive modeling [J]. Canadian Geotechnical Journal, 2007, 44: 942 − 956. doi: 10.1139/t07-031
    [29] Laloui L, Cekerevac C. Thermo-plasticity of clays: an isotropic yield mechanism [J]. Computers and Geotechnics, 2003, 30(8): 649 − 660. doi: 10.1016/j.compgeo.2003.09.001
    [30] 张国强. 流体力学[M]. 北京: 机械工程出版社, 2006.

    Zhang Guoqiang. Fluid mechanics [M]. Beijing: China Machine Press, 2006. (in Chinese)
    [31] Ong C Y, Chai J C, Hino T. Degree of consolidation of clayey deposit with partially penetrating vertical drains [J]. Geotextiles and Geomembranes, 2012, 34: 19 − 27. doi: 10.1016/j.geotexmem.2012.02.008
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  159
  • HTML全文浏览量:  77
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-18
  • 修回日期:  2021-08-11
  • 网络出版日期:  2021-09-10
  • 刊出日期:  2022-08-01

目录

    /

    返回文章
    返回