A NEW ANISOTROPIC PLASTIC-DAMAGE MODEL AND ITS NUMERICAL IMPLEMENTATION FOR PLAIN CONCRETE
-
摘要: 该文的目的是建立一种新的、相对简单的混凝土各向异性塑性损伤本构模型,以方便的模拟混凝土结构的破坏行为。为了更好地描述混凝土在拉、压荷载作用下的不同损伤机制,建立了拉、压不同的两种损伤演化方程,用于确定各向异性的拉、压损伤变量。另外,根据应变等效假设,假定有效构型和损伤构型的应变相等,该方法不仅大大简化了模型的推导过程,而且可方便的通过解耦算法进行有效应力和损伤及名义应力的计算,也即塑性部分计算可通过现有的隐式算法实现,损伤部分及名义应力的计算则可通过较为简便的显式算法实现,从而可大大提高计算效率。模型结果与试验结果的对比分析表明:该模型能较好地描述混凝土在三维应力状态下的非线性行为;对双边开口四点弯曲梁试件的模拟也表明:该模型能反应混凝土损伤各向异性的特点,计算结果相比ABAQUS软件自带的混凝土损伤塑性本构模型(CDP模型)更符合实际情况,计算效率也更高。Abstract: A new and relatively simple anisotropic plastic-damage constitutive model is developed to facilitate the numerical simulation of the failure of concrete structures. For better describe the different damage mechanisms of concrete under tensile and compressive loadings, two different damage evolution equations, being suitable for determining the anisotropic tensile and compressive damage variables, are established. Moreover, the strain equivalence hypothesis is used to assume that the strains in both the effective and nominal configurations are equal. Through this method, the deducing process of the model can be simplified, and the effective stress calculation and the damage evolution are able to be implemented by a decoupled algorithm. Thusly, the plastic part of the model can be implemented implicitly, and the damage part and nominal stress calculation can be implemented explicitly, which is convenient for numerical implementation. The model response is compared to a wide range of test results. The results show that the model is able to describe the nonlinear behavior of concrete in three-dimensional stress state well. The simulation of double-edge-notched (DEN) specimen shows that: the model can reflect the characteristics of concrete damage anisotropy. The results are more consistent with the actual situation, and the computational efficiency is also higher than that of the concrete damage plasticity (CDP) model provided by ABAQUS software.
-
Key words:
- concrete /
- plastic-damage model /
- anisotropic damage /
- tensile damage /
- compressive damage
-
材料参数 数值 材料参数 数值 初始弹性
模量${E_0}/{\rm{GPa}} $31.00 峰值应力$f_{\rm u}^ -$对应应变$\varepsilon _{\rm u}^ - /( \times {10^{ - 3} })$ −1.19 初始未损伤弹性模量${ {\bar E}_0}/{\rm{GPa}} $ 33.08 极限应变$\varepsilon _{\rm f}^ - /( \times {10^{ - 3} })$ −8.53 泊松比ν 0.20 压缩硬化参数Q−/MPa 57.50 初始损伤d0 0.063 压缩硬化参数b− 1,082 单轴抗压屈服
强度$f_0^ - /{\rm{MPa}} $−17.08 控制压缩应力-应变
曲线形状参数c13.21 单轴受压峰值
应力$f_{\rm u}^ - /{\rm{MPa} }$−28.13 控制压缩应力-应变
曲线形状参数c2−0.12 注:Q−和b−分别代表单轴压缩饱和应力及饱和率,用来控制单轴压缩时硬化曲线的形状。 表 2 根据文献[40]试验结果得到的材料参数表
Table 2. Material constants identified from the experimental results of literature[40]
材料参数 数值 材料参数 数值 初始弹性
模量${E_0}/{\rm{GPa} } $31.00 抗拉强度$f_0^ + $对应
应变$\varepsilon _0^ + /( \times {10^{ - 4}}) $1.12 初始未损伤弹性
模量${ {\bar E}_0}/{\rm{GPa}} $33.08 拉伸硬化参数${h^ + }/{\rm{MPa} } $ 2,733 泊松比ν 0.20 控制拉伸应力-应变曲线形状参数${\alpha _u} $ 4.14 初始损伤d0 0.063 控制拉伸应力-应变曲线形状参数a 0.05 单轴抗拉
强度$f_0^ + /{\rm{MPa}} $3.47 − − 注:h+表示单轴拉伸饱和应力,用来控制单轴拉伸时硬化曲线的形状。 表 3 单轴单调压缩试验所用材料参数表
Table 3. Material properties used for the monotonic uniaxial compressive test
材料参数 数值 材料参数 数值 初始弹性模量${E_0}/{\rm{GPa}}$ 31.70 峰值应力$f_{\rm u}^ -$对应应变$\varepsilon _{\rm u}^ - /( \times {10^{ - 3} })$ −1.61 初始未损伤弹性模量${ {\bar E}_0}/{\rm{GPa}}$ 33.83 极限应变$\varepsilon _{\rm f}^ - /( \times {10^{ - 3} })$ −7.23 泊松比ν 0.20 压缩硬化参数Q−/MPa 27.58 初始损伤d0 0.063 压缩硬化参数b− 1,655 单轴抗压屈服强度$f_0^ - /{\rm{MPa}}$ −11.74 控制压缩应力-应变曲线形状参数c1 3.00 单轴受压峰值应力$f_{\rm u}^ - /{\rm{MPa} }$ −29.13 控制压缩应力-应变曲线形状参数c2 −1.96 注:Q−和b−分别代表单轴压缩饱和应力及饱和率,用来控制单轴压缩时硬化曲线的形状。 表 4 单轴单调拉伸加载试验所用材料参数表
Table 4. Material parameters used for the monotonic uniaxial tensile test
材料参数 数值 材料参数 数值 初始弹性模量E0/GPa 31.00 抗拉强度$f_0^ + $对应应变$\varepsilon _0^ + /( \times {10^{ - 4}}) $ 1.24 初始未损伤弹性模量${\bar E_0}/{\rm{GPa}}$ 33.08 拉伸硬化参数${h^ + }/{\rm{MPa}}$ 14,600 泊松比ν 0.20 控制拉伸应力-应变
曲线形状参数${\alpha _{\rm u}}$4.20 初始损伤d0 0.063 控制拉伸应力-应变
曲线形状参数a0.05 单轴抗拉强度$f_0^ + /{\rm{MPa}}$ 3.84 − − 注:表示h+单轴拉伸饱和应力,用来控制单轴拉伸时硬化曲线的形状。 表 5 双轴压缩加载试验所用材料参数表
Table 5. Material constants used for the biaxial compressive test
材料参数 数值 材料参数 数值 初始弹性模量${E_0}/{\rm{GPa}}$ 32.00 单轴抗压屈服强度$f_0^ - /{\rm{MPa }}$ −15.82 初始未损伤弹性模量${ {\bar E}_0}/{\rm{GPa}}$ 34.15 单轴受压峰值应力$f_{\rm u}^ - /{\rm{MPa} }$ −33.50 泊松比ν 0.20 峰值应力$f_{\rm u}^ -$对应应变$\varepsilon _{\rm u}^ - /( \times {10^{ - 3} })$ −1.77 初始损伤d0 0.063 极限应变$\varepsilon _{\rm f}^ - /( \times {10^{ - 3} })$ −6.81 单轴抗拉强度$f_0^ + /{\rm{MPa}}$ 2.88 压缩硬化参数${Q^ - }/{\rm{MPa}}$ 39.14 抗拉强度$f_0^ + $对应应变$\varepsilon _0^ + /( \times {10^{ - 4}}) $ 0.91 压缩硬化参数b− 875.97 拉伸硬化参数h+/MPa 13,175 控制压缩应力-应变曲线形状参数c1 3.59 控制拉伸应力-应变曲线形状参数${\alpha _{\rm u}}$ 1.07 控制压缩应力-应变曲线形状参数c2 −5.05 控制拉伸应力-应变曲线形状参数a 0.05 − − 注:h+表示单轴拉伸饱和应力,用来控制单轴拉伸时硬化曲线的形状;Q−和b−分别代表单轴压缩饱和应力及饱和率,用来控制单轴压缩时硬化曲线的形状。 表 6 双边开口混凝土梁试件断裂数值模拟材料参数
Table 6. Material parameters used for the DEN specimen fracture simulation
材料参数 数值 材料参数 数值 初始弹性模量${E_0}/{\rm{GPa}} $ 30.00 单轴抗压屈服强度$f_0^ - /{\rm{MPa }} $ −20.00 初始未损伤弹性模量${ {\bar E}_0}/{\rm{GPa}} $ 32.02 单轴受压峰值应力$f_{\rm u}^ - /{\rm{MPa} }$ −46.60 泊松比ν 0.20 峰值应力$f_{\rm u}^ -$对应应变$\varepsilon _{\rm u}^ - /( \times {10^{ - 3} })$ −2.31 初始损伤d0 0.063 极限应变$\varepsilon _{\rm f}^ - /( \times {10^{ - 3} })$ −17.73 单轴抗拉强度$f_0^ + /{\rm{MPa}} $ 3.44 压缩硬化参数${Q^ - }/{\rm{MPa}} $ 60.98 抗拉强度$f_0^ + $对应应变$\varepsilon _0^ + /( \times {10^{ - 4}}) $ 1.19 压缩硬化参数b− 837.00 拉伸硬化参数h+/MPa 13,552 控制压缩应力-应变曲线形状参数c1 23.35 控制拉伸应力-应变曲线形状参数${\alpha _{\rm u}}$ 3.43 控制压缩应力-应变曲线形状参数c2 −29.78 控制拉伸应力-应变曲线形状参数a 0.05 − − 注:h+表示单轴拉伸饱和应力,用来控制单轴拉伸时硬化曲线的形状;Q−和b−分别代表单轴压缩饱和应力及饱和率,用来控制单轴压缩时硬化曲线的形状。 表 7 CDP模型计算时所用混凝土弹塑性参数
Table 7. Elasto-plastic mechanic parameters of concrete used by CDP model
材料参数 数值 材料参数 数值 弹性模量E/GPa 32.0 流动势偏心率e 0.1 泊松比ν 0.2 粘性耗散系数$\mu $ 0.0005 双轴极限抗压强度与单轴抗压强度之比fb0/fc0 1.16 拉伸子午面上与压缩
子午面上的第二应力
不变量之比K0.6667 膨胀角$\psi $/(°) 30.0 − − 表 8 CDP模型计算时所用混凝土损伤参数
Table 8. Damage parameters of concrete used by CDP model
压缩屈服
强度/MPa非弹性
应变/(×10−3)压损伤
因子拉伸屈服
强度/MPa非弹性
应变/(×10−3)拉损伤
因子20.00 0.00 0.00 2.49 0.00 0.00 31.67 0.10 0.06 1.43 0.12 0.11 38.70 0.21 0.09 0.94 0.23 0.26 43.83 0.37 0.14 0.67 0.34 0.41 45.92 0.74 0.24 0.46 0.54 0.59 43.35 1.16 0.33 0.38 0.67 0.67 32.17 2.30 0.51 0.30 0.90 0.78 19.08 3.88 0.69 0.26 1.10 0.86 14.54 4.80 0.77 0.18 1.78 0.94 7.10 8.12 0.91 0.16 2.12 0.95 4.41 11.66 0.97 0.14 2.50 0.96 -
[1] Wang Z, Jin X, Jin N, et al. Damage based constitutive model for predicting the performance degradation of concrete [J]. Latin American Journal of Solids and Structures, 2014, 11(6): 907 − 924. doi: 10.1590/S1679-78252014000600001 [2] Abu Al-Rub R K, Voyiadjis G Z. On the coupling of anisotropic damage and plasticity models for ductile materials [J]. International Journal of Solids and Structures, 2003, 40(11): 2611 − 2643. doi: 10.1016/S0020-7683(03)00109-4 [3] Cicekli U, Voyiadjis G Z, Abu Al-Rub R K. A plasticity and anisotropic damage model for plain concrete [J]. International Journal of Plasticity, 2007, 23(10/11): 1874 − 1900. doi: 10.1016/j.ijplas.2007.03.006 [4] Abu Al-Rub R K, Kim S M. Computational applications of a coupled plasticity-damage constitutive model for simulating plain concrete fracture [J]. Engineering Fracture Mechanics, 2010, 77(10): 1577 − 1603. doi: 10.1016/j.engfracmech.2010.04.007 [5] Liu J, Lin G, Zhong H. An elastoplastic damage constitutive model for concrete [J]. China Ocean Engineering, 2013, 27(2): 169 − 182. doi: 10.1007/s13344-013-0015-y [6] Madkour H. Thermodynamic modeling of the elastoplastic- damage model for concrete [J]. Journal of Engineering Mechanics, 2021, 147(4): 04021011. doi: 10.1061/(ASCE)EM.1943-7889.0001900 [7] Liang L, Hongwei W, Jun W, et al. A thermo- mechanical coupling constitutive model of concrete including elastoplastic damage [J]. Applied Sciences, 2021, 11(2): 11020604. doi: 10.3390/app11020604 [8] Ahmed B, Voyiadjis G Z, Park T. Damaged plasticity model for concrete using scalar damage variables with a novel stress decomposition [J]. International Journal of Solids and Structures, 2020, 191/192: 56 − 75. doi: 10.1016/j.ijsolstr.2019.11.023 [9] 曹鹏, 冯德成, 沈新普, 等. 基于ABAQUS平台的塑性损伤子程序开发及其稳定性研究[J]. 工程力学, 2012, 29(增刊 2): 101 − 106. doi: 10.6052/j.issn.1000-4750.2011.11.S044Cao Peng, Feng Decheng, Shen Xinpu, et al. Development of plasticity-damage model based on ABAQUS and algorithm stability analysis [J]. Engineering Mechanics, 2012, 29(Suppl 2): 101 − 106. (in Chinese) doi: 10.6052/j.issn.1000-4750.2011.11.S044 [10] Long Y C, Yu C T. Numerical simulation of the damage behavior of a concrete beam with an anisotropic damage model [J]. Strength of Materials, 2018, 50(5): 735 − 742. doi: 10.1007/s11223-018-0018-2 [11] Abedulgader B, Mario A, Rostislav C. Microplane fatigue model MS1 for plain concrete under compression with damage evolution driven by cumulative inelastic shear strain [J]. International Journal of Plasticity, 2021, 143: 102950. [12] Christian D, Stephan W. A gradient-extended large-strain anisotropic damage model with crack orientation director [J]. Computer Methods in Applied Mechanics and Engineering, 2021, 387: 114123. doi: 10.1016/j.cma.2021.114123 [13] Jani V, Reijo K, Juha H, et al. Anisotropic damage model for concrete and other quasi-brittle materials [J]. International Journal of Solids and Structures, 2021, 225: 111048. doi: 10.1016/j.ijsolstr.2021.111048 [14] Wu J Y. A unified phase-field theory for the mechanics of damage and quasi-brittle failure [J]. Journal of the Mechanics and Physics of Solids, 2017, 103: 72 − 99. doi: 10.1016/j.jmps.2017.03.015 [15] Wu J Y, Nguyen V P. A length scale insensitive phase-field damage model for brittle fracture [J]. Journal of the Mechanics and Physics of Solids, 2018, 119: 20 − 42. doi: 10.1016/j.jmps.2018.06.006 [16] Wu J Y, Nguyen V P, Zhou H, et al. A variationally consistent phase-field anisotropic damage model for fracture [J]. Computer Methods in Applied Mechanics and Engineering, 2020, 358: 112629. doi: 10.1016/j.cma.2019.112629 [17] 吴建营. 固体结构损伤破坏统一相场理论、算法和应用[J]. 力学学报, 2021, 53(2): 301 − 329. doi: 10.6052/0459-1879-20-295Wu Jianying. On the unified phase-field theory for damage and failure in solids and structures: theoretical and numerical aspects [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 301 − 329. (in Chinese) doi: 10.6052/0459-1879-20-295 [18] Grassl P, Xenos D, Nyström U, et al. CDPM2: A damage-plasticity approach to modelling the failure of concrete [J]. International Journal of Solids and Structures, 2013, 50(24): 3805 − 3816. doi: 10.1016/j.ijsolstr.2013.07.008 [19] Kitzig M, Häußler-Combe U. Modeling of plain concrete structures based on an anisotropic damage formulation [J]. Materials and Structures, 2011, 44(10): 1837 − 1853. doi: 10.1617/s11527-011-9741-x [20] Murakami S. Continuum damage mechanics: a continuum mechanics approach to the analysis of damage and fracture [M]. Berlin: Springer, 2012. [21] Du R Q, Zhang Q, Chen S H, et al. Safety evaluation of Dagangshan arch dam resisting strong earthquakes with a rate-dependency anisotropic damage model [J]. Science China Technological Sciences, 2011, 54(3): 531 − 540. doi: 10.1007/s11431-011-4305-4 [22] Jiao Y T, Wang B, Shen Z Z. A new 3D empirical plastic and damage model for simulating the failure of concrete structure [J]. International Journal of Concrete Structures and Materials, 2019, 13(7): 1 − 18. [23] 曹胜涛, 李志山. 约束混凝土单轴弹塑性损伤本构模型[J]. 工程力学, 2017, 34(11): 116 − 125. doi: 10.6052/j.issn.1000-4750.2016.07.0513Cao Shengtao, Li Zhishan. An elastoplastic damage constitutive model for confined concrete under uniaxial load [J]. Engineering Mechanics, 2017, 34(11): 116 − 125. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.07.0513 [24] 于海祥, 武建华. 基于无损受力状态的混凝土弹塑性损伤本构模型[J]. 工程力学, 2009, 26(10): 79 − 86.Yu Haixiang, Wu Jianhua. An elastoplastic damage constitutive model for concrete based on undamaged state [J]. Engineering Mechanics, 2009, 26(10): 79 − 86. (in Chinese) [25] 许梦飞, 姜谙男, 史洪涛, 等. 基于Hoek-Brown准则的岩体弹塑性损伤模型及其应力回映算法研究[J]. 工程力学, 2020, 37(1): 195 − 206. doi: 10.6052/j.issn.1000-4750.2019.03.0084Xu Mengfei, Jiang Annan, Shi Hongtao, et al. An elastoplastic damage constitutive rock model and its stress mapping algorithm based on the hoek-brown criterion [J]. Engineering Mechanics, 2020, 37(1): 195 − 206. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.03.0084 [26] Francisco E, Araújo M J F. A novel continuum damage model to simulate quasi-brittle failure in mode I and mixed-mode conditions using a continuous or a continuous-discontinuous strategy [J]. Theoretical and Applied Fracture Mechanics, 2020, 109: 102745. doi: 10.1016/j.tafmec.2020.102745 [27] Bin S, Zhaodong X. A minimum Lemaitre's damage strain energy release rate-based model for competitive fracture process simulation of quasi-brittle materials [J]. Theoreti- cal and Applied Fracture Mechanics, 2020, 109: 102705. doi: 10.1016/j.tafmec.2020.102705 [28] Häussler-Combe U, Hartig J. Formulation and numerical implementation of a constitutive law for concrete with strain-based damage and plasticity [J]. International Journal of Non-Linear Mechanics, 2008, 43(5): 399 − 415. doi: 10.1016/j.ijnonlinmec.2008.01.005 [29] 江见鲸, 陆新征, 叶列平. 混凝土结构有限元分析 [M]. 北京: 清华大学出版社, 2005.Jiang Jianjing, Lu Xinzheng, Ye Lieping. Finite element analysis of concrete structures [M]. Beijing: Tsinghua University Press, 2005. (in Chinese) [30] Robotnov Y N. Creep rupture [C]// Proceedings of the Twelfth International Congress of Applied Mechanics. Berlin, Springer, 1968: 342 − 349. [31] 张培, 任青文. 循环荷载下混凝土疲劳损伤累积分析的颗粒流黏结退化模型[J]. 工程力学, 2021, 38(增刊): 100 − 109. doi: 10.6052/j.issn.1000-4750.2020.04.S018Zhang Pei, Ren Qingwen. Particle bond-degradationmodel for cumulative damage analysis of concrete undercyclic loading [J]. Engineering Mechanics, 2021, 38(Suppl): 100 − 109. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.S018 [32] Lemaitre J L, Chanboche J L. A nonlinear model of creep-fatigue damage cumulation and interaction [C]// Proceeding of TUTAM Symposium of Mechanics of Visco-elasticity Media and Bodies. Gotenbourg, Springer, 1974. [33] Mozaffari N, Voyiadjis G Z. Phase field based nonlocal anisotropic damage mechanics model [J]. Physica D Nonlinear Phenomena, 2015, 308: 11 − 25. doi: 10.1016/j.physd.2015.06.003 [34] Lubliner J, Oliver J, Oller S, et al. A plastic-damage model for concrete [J]. International Journal of Solids and Structures, 1989, 25(3): 299 − 326. doi: 10.1016/0020-7683(89)90050-4 [35] Lee J H, Fenves G L. Plastic-damage model for cyclic loading of concrete structures [J]. Journal of Engineering Mechanics-Asce, 1998, 124(8): 892 − 900. doi: 10.1061/(ASCE)0733-9399(1998)124:8(892) [36] Zhang H, Wei D M. Fractal effect and anisotropic constitutive model for concrete [J]. Theoretical & Applied Fracture Mechanics, 2009, 51(3): 167 − 173. [37] 邱玲, 徐道远, 朱为玄, 等. 混凝土压缩时初始损伤及损伤演变的试验研究[J]. 合肥工业大学学报(自然科学版), 2001, 24(6): 1061 − 1065.Qiu Ling, Xu Daoyuan, Zhu Weixuan, et al. Study of initial damage and damage development of concrete by compression test [J]. Journal of Hefei University of Technology (Natural Science), 2001, 24(6): 1061 − 1065. (in Chinese) [38] Yu T, Teng J G, Wong Y L, et al. Finite element modeling of confined concrete-II: Plastic-damage model [J]. Engineering Structures, 2010, 32(3): 680 − 691. doi: 10.1016/j.engstruct.2009.11.013 [39] Karsan I D, Jirsa J O. Behavior of concrete under compressive loadings [J]. Journal of the Structural Division (ASCE), 1969, 95: 2543 − 2563. doi: 10.1061/JSDEAG.0002424 [40] Taylor R. FEAP: A finite element analysis program for engineering workstation [R]. Berkeley: Department of Civil Engineering, University of California, 1992. [41] Gopalaratnam V, Shah S P. Softening response of plain concrete in direct tension [J]. ACI Materials Journal, 1985, 82(3): 310 − 323. [42] Kupfer H, Hilsdorf H K, Rusch H. Behavior of concrete under biaxial stresses [J]. Journal of the American Concrete Institute, 1969, 66(8): 656 − 666. [43] Schlangen H E J G. Experimental and numerical analysis of fracture processes in concrete [D]. Delft, Netherlands: Delft University of Technology, 1993. [44] 张劲, 王庆扬, 胡守营, 等. ABAQUS混凝土损伤塑性模型参数验证[J]. 建筑结构, 2008, 38(8): 127 − 130.Zhang Jin, Wang Qingyang, Hu Shouying, et al. Parameters verification of concrete damaged plastic model of ABAQUS [J]. Building Structure, 2008, 38(8): 127 − 130. (in Chinese) -