A DYNAMIC STIFFNESS MATRIX METHOD FOR STEEL-CONCRETE COMPOSITE BEAMS BASED ON THE TIMOSHENKO BEAM THEORY
-
摘要: 基于Timoshenko梁理论提出了适用于分析钢-混组合梁自振特性的动力刚度矩阵法,该计算模型中考虑了钢-混结合面剪切滑移、剪切变形和转动惯量的综合影响。动力刚度矩阵推导过程中未引入近似位移场或力场,因此,计算结果是准确的。与其他Timoshenko梁模型最大的不同是假设混凝土子梁和钢梁分别具有独立的剪切角,这个假设更加符合组合梁的实际运动,因此,计算结果更加准确。与已发表文章中的试验梁频率计算结果作对比分析;并讨论了不同剪力键刚度、跨高比时,剪切变形和转动惯量对钢-混组合梁自振频率的影响。结果表明:相对于已有的Euler-Bernoulli组合梁、子梁转角相同假设的Timoshenko组合梁模型,文中计算方法具有更高的计算精度,尤其是对于高阶频率;频率越高、剪力键刚度越大或跨高比越小,Euler-Bernoulli组合梁模型计算结果误差越大;对于1阶、2阶和3阶频率,高跨比分别大于10、18和25后,Euler-Bernoulli组合梁模型计算结果误差小于5%。
-
关键词:
- 桥梁工程 /
- 动力刚度矩阵法 /
- Timoshenko梁理论 /
- 子梁独立剪切角 /
- 跨高比
Abstract: A dynamic stiffness matrix method for the free vibration of steel-concrete composite beams is proposed based on the Timoshenko beam theory. In this method, the effects of interfacial shear slip, shear deformation and rotational inertia are considered. The results are exact because no approximate displacement and/or force fields are introduced in the element derivation. Compared with other Timoshenko composite beam models, the main advantage of the proposed method is that it assumes that each sub-beam has an independent rotary angle. This assumption is more consistent with the reality, leading to more accurate results. The eigenfrequencies obtained by the proposed method are compared with those by other methods in the literature using experimental models. The influence of shear deformation and rotational inertia on the frequency of composite beams with different shear connector stiffnesses and span-to-depth ratios is discussed in detail. The results show that the proposed method is more accurate than EBT and TBT with assumed identical rotary angles for the two sub-beams, especially for higher modes. Higher frequency, greater shear connector stiffness and smaller span-to-depth ratio result in larger relative errors for the Euler-Bernoulli beam theory. For the first, second and third frequencies, the errors of the Euler Bernoulli composite beam model are less than 5% when the span-to-depth ratio is greater than 10, 18 and 25, respectively. -
表 1 梁材料参数
Table 1. Material parameters of composite beam
参数 实验梁 混凝土子梁 钢梁 Ei/MPa 3.0×104 2.06×105 Gi/MPa 1.4375×104 7.9231×104 ρi/(kg/m3) 2600 7850 ki 0.83 0.38 Ai/m2 0.51 0.0406 Ii/m4 3.825×10−3 2.495×10−3 表 2 实验梁2自振频率分析结果对比表
Table 2. Comparison of eigenfrequencies obtained by different methods for experimental beam 2
阶数 测试结果 ANSYS 理论计算结果 文献[23] 文献[24] 本文理论 1 19.38 21.08 22.86 (4.9) 22.04 (1.2) 21.79 2 63.13 63.09 73.99 (12.9) 72.92 (11.3) 65.52 3 − 116.71 156.37 (24.0) 143.63 (13.9) 126.07 4 − 172.08 263.46 (35.6) 231.45 (19.2) 194.23 5 − 224.48 402.66 (48.2) 333.06 (22.6) 271.65 注:文献[23]为Euler-Bernoulli组合梁模型;文献[24]为Timoshenko组合梁模型,但假设混凝土子梁和钢梁具有相同的剪切角。括号中数值为相对于本文理论计算结果的误差/(%)。 -
[1] 聂建国, 余志武. 钢-混凝土组合梁在我国的研究及应用[J]. 土木工程学报, 1999, 32(2): 3 − 8. doi: 10.3321/j.issn:1000-131X.1999.02.001Nie Jianguo, Yu Zhiwu. Research and practice of composite steel-concrete beams in China [J]. China Civil Engineering Journal, 1999, 32(2): 3 − 8. (in Chinese) doi: 10.3321/j.issn:1000-131X.1999.02.001 [2] 樊健生, 王哲, 杨松, 等. 钢-超高性能混凝土组合箱梁弹性弯曲性能试验研究及解析解[J]. 工程力学, 2020, 37(11): 36 − 46. doi: 10.6052/j.issn.1000-4750.2019.11.0700Fan Jiansheng, Wang Zhe, Yang Song, et al. Experimental study on and analytical solution of the elastic bending behavior of steel-UHPC composite box girders [J]. Engineering Mechanics, 2020, 37(11): 36 − 46. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.11.0700 [3] 刘永健, 刘江. 钢-混凝土组合梁桥温度作用与效应综述[J]. 交通运输工程学报, 2020, 20(1): 42 − 59.Liu Yongjian, Liu Jiang. Review on temperature action and effect of steel-concrete composite girder bridge [J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 42 − 59. (in Chinese) [4] 侯和涛, 臧增运, 鲁玉曦, 等. 新型全装配钢-混凝土组合梁连接件推出试验研究[J]. 工程力学, 2020, 37(2): 201 − 210. doi: 10.6052/j.issn.1000-4750.2019.03.0146Hou Hetao, Zang Zengyun, Lu Yuxi, et al. Push-out tests of shear connectors for new fully assembled steel-concrete composite beams [J]. Engineering Mechanics, 2020, 37(2): 201 − 210. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.03.0146 [5] 张永平, 徐荣桥. 考虑层间滑移的多层组合梁挠度计算[J]. 工程力学, 2018, 35(增刊): 22 − 26. doi: 10.6052/j.issn.1000-4750.2017.06.S031Zhang Yongping, Xu Rongqiao. Analytical analysis for calculating deflections of multilayered composite beams with interlayer slips [J]. Engineering Mechanics, 2018, 35(Suppl): 22 − 26. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.06.S031 [6] Yan J B, Liew J Y R, Zhang M H, et al. Experimental and analytical study on ultimate strength behavior of steel–concrete–steel sandwich composite beam structures [J]. Materials and Structures, 2015, 48: 1523 − 1544. [7] Zhao Y, Zhou X H, Yang Y L, et al. Stiffness and cracking behavior of new U-shaped steel and concrete composite beam under negative bending [J]. Journal of Structural Engineering, 2020, 146(5): 04020046. doi: 10.1061/(ASCE)ST.1943-541X.0002594 [8] Girhammar U A, Pan D H. Dynamic analysis of composite members with interlayer slip [J]. International Journal of Solids and Structures, 1993, 30(6): 797 − 823. doi: 10.1016/0020-7683(93)90041-5 [9] Huang C W, Su Y H. Dynamic characteristics of partial composite beams [J]. International Journal of Structural Stability and Dynamics, 2008, 8(4): 665 − 685. doi: 10.1142/S0219455408002946 [10] Wu Y F, Xu R Q, Chen W Q. Free vibrations of the partial-interaction composite members with axial force [J]. Journal of Sound and Vibration, 2007, 299(4): 1074 − 1093. [11] 侯忠明, 夏禾, 张彦玲. 栓钉连接件抗剪刚度对钢-混凝土结合梁自振特性影响研究[J]. 中国铁道科学, 2012, 33(6): 24 − 29. doi: 10.3969/j.issn.1001-4632.2012.06.05Hou Zhongming, Xia He, Zhang Yanling. The influence of the shear stiffness of stud connectors on the natural vibration characteristics of steel-concrete composite beams [J]. China Railway Science, 2012, 33(6): 24 − 29. (in Chinese) doi: 10.3969/j.issn.1001-4632.2012.06.05 [12] 侯忠明, 夏禾, 王元清, 等. 钢-混凝土组合梁动力折减系数研究[J]. 振动与冲击, 2015, 34(4): 74 − 81.Hou Zhongming, Xia He, Wang Yuanqing, et al. Dynamic redution coefficients for a steel-concrete composite beam [J]. Journal of Vibration and Shock, 2015, 34(4): 74 − 81. (in Chinese) [13] 孙琪凯, 张楠, 刘潇, 等. 基于能量法分析考虑纵向刚度分布的钢-混组合梁自振特性[J]. 振动与冲击, 2021, 40(10): 67 − 72.Sun Qikai, Zhang Nan, Liu Xiao, et al. Free vibration characteristics of steel-concrete composite beams considering longitudinal stiffness distribution based on energy method [J]. Journal of Vibration and Shock, 2021, 40(10): 67 − 72. (in Chinese) [14] Xu R Q, Wu Y F. Static dynamic and buckling analysis of partial interaction composite members using Timoshenko's beam theory [J]. International Journal of Mechanical Sciences, 2007, 49(10): 1139 − 1155. doi: 10.1016/j.ijmecsci.2007.02.006 [15] Lin J P, Wang G N, Bao G J, et al. Stiffness matrix for the analysis and design of partial-interaction composite beams [J]. Construction and Building Materials, 2017, 156: 761 − 772. [16] Lin J P, Wang G N, Xu R Q. Variational principles and explicit finite-element formulations for the dynamic analysis of partial-interaction composite beams [J]. Journal of Engineering Mechanics-ASCE, 2020, 146(6): 04020055. doi: 10.1061/(ASCE)EM.1943-7889.0001789 [17] Nguyen Q H, Hjiaj M, Grognec P L. Analytical approach for free vibration analysis of two-layer Timoshenko beams with interlayer slip [J]. Journal of Sound and Vibration, 2012, 331(12): 2949 − 2961. doi: 10.1016/j.jsv.2012.01.034 [18] Banerjee J R. Dynamic stiffness formulation for structural elements: A general approach [J]. Computer Structures, 1997, 63(1): 101 − 103. doi: 10.1016/S0045-7949(96)00326-4 [19] Banerjee J R, Su H. Dynamic stiffness formulation and free vibration analysis of a spinning composite beam [J]. Computer Structures, 2006, 84(19): 1208 − 1214. [20] Li J, Bao Y C, Hu P. A dynamic stiffness method for analysis of thermal effect on vibration and buckling of a laminated composite beam [J]. Archive of Applied Mechanics, 2017, 87(8): 1295 − 1315. doi: 10.1007/s00419-017-1250-0 [21] Li J, Huo Q J, Li X B, et al. Dynamic stiffness analysis of steel-concrete composite beams [J]. Steel and Composite Structures, 2014, 16(6): 577 − 593. doi: 10.12989/scs.2014.16.6.577 [22] Bao G J, Xu R Q. Dynamic stiffness matrix of partial-interaction composite beams [J]. Advances in Mechanical Engineering, 2015, 7: 1 − 7. [23] Sun Q K, Zhang N, Liu X, et al. Free vibrations of steel-concrete composite beams by the dynamic direct stiffness method [J]. International Journal of Structural Stability and Dynamic, 2021, 21(4): 21500498. doi: 10.1142/S0219455421500498 [24] Wang J F, Zhang J T, Xu R Q, et al. A numerically stable dynamic coefficient method and its application in free vibration of partial-interaction continuous composite beams [J]. Journal of Sound and Vibration, 2019, 457: 314 − 332. -