NUMERICAL SIMULATION AND PARAMETRIC STUDY OF SHAPE MEMORY ALLOY SLIP FRICTION DAMPERS
-
摘要: 该文将超弹性形状记忆合金(shape memory alloy,SMA)螺栓和摩擦斜面结合,提出一种SMA滑动摩擦阻尼器(SMA slip friction damper,SMASFD)。介绍了SMASFD的基本构造和工作原理,给出描述滞回行为的理论公式,开展了概念验证试验,建立了三维实体单元有限元模型。试验数据和分析结果均表明,采用合理设计的斜面倾角和摩擦系数,阻尼器可展示出“旗帜形”滞回曲线,拥有良好的耗能能力和优越的自复位能力,并且理论公式和模拟结果均与试验数据吻合良好。基于已经验证的有限元模型,建立了6个额外的有限元模型进行参数分析,关键参数包括斜面倾角、摩擦系数和SMA螺栓的预紧力。参数分析结果表明:阻尼器的非线性变形集中于SMA螺栓内,其他部件保持弹性;增大斜面倾角可提高阻尼器的强度、割线刚度和耗能能力;当接触面间的摩擦系数较大时,阻尼器的耗能能力得到提高,但是超过上限值会导致阻尼器无法自复位;对SMA螺栓施加预紧力可提高阻尼器的初始刚度和割线刚度,但是会降低阻尼器的最大变形能力。Abstract: A novel self-centering shape memory alloy slip friction damper (SMASFD) is proposed by combining shape memory alloy (SMA) bolts and friction interfaces of grooved plates. This paper introduces the configuration and working mechanism, the theoretical equations, the proof-of-concept test, and a finite element (FE) model of the damper. The result shows that the damper with an appropriate design of the groove angle and friction coefficient has flag-shaped hysteresis, which indicates good energy dissipation capacity and excellent self-centering capability. Both the analytical prediction and the simulation results agree well with the experimental data. A parametric study is carried out based on the verified FE model. Six additional models are established. The key parameters include the groove angle, friction coefficient and preloading of SMA bolts. The results indicate that: the nonlinear deformation is concentrated in the SMA bolts, and the other components remain elastic; increasing the groove angle will increase the strength capacity, secant stiffness and energy dissipation; the energy dissipation capacity increases with the increase of the friction coefficient, but the self-centering capacity will be lost if the friction coefficient exceeds the upper limit; preloading the SMA bolts enhances the initial stiffness and secant stiffness, but it reduces the deformation capacity of the damper.
-
Key words:
- shape memory alloy /
- self-centering damper /
- cyclic behavior /
- numerical analysis /
- parametric study
-
力学性能参数 值 正相变起始应力σMs/MPa 380 正相变结束应力σMf/MPa 490 逆相变起始应力σAs/MPa 220 逆相变结束应力σAf/MPa 120 奥氏体模量EA/GPa 50 马氏体模量EM/GPa 45 相变应变εL/(%) 5 奥氏体泊松比νA 0.33 马氏体泊松比νM 0.33 表 2 各模型参数
Table 2. Parameters of models
模型编号 设计参数 滞回性能参数 tanθ μ Fpre/
kNFmax/
kN$F_{\rm{max}}'$/
kNΔmax/
mmK/
(kN/mm)WD/
Jξ/
(%)S1 0.3 0.15 0.0 63.6 18.9 16.7 3.8 1559.7 23.4 S2 0.2 0.15 0.0 48.7 6.5 25.0 2.0 1962.9 25.6 S3 0.4 0.15 0.0 79.6 31.1 12.5 6.4 1384.0 22.1 S4 0.3 0.00 0.0 40.5 20.4 16.7 2.4 611.3 14.4 S5 0.3 0.30 0.0 89.1 0.0 16.7 5.3 2549.4 27.3 S6 0.3 0.15 17.5 63.6 18.9 15.9 4.0 1550.3 24.3 S7 0.3 0.15 35.1 63.6 18.9 15.1 4.2 1478.2 24.4 -
[1] 周颖, 吴浩, 顾安琪. 地震工程: 从抗震、减隔震到可恢复性[J]. 工程力学, 2019, 36(6): 1 − 12. doi: 10.6052/j.issn.1000-4750.2018.07.ST09Zhou Ying, Wu Hao, Gu Anqi. Earthquake engineering: From earthquake resistance, energy dissipation, and isolation, to resilience [J]. Engineering Mechanics, 2019, 36(6): 1 − 12. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.ST09 [2] 朱立华, 李钢, 李宏男. 考虑结构损伤的消能减震结构能量设计方法[J]. 工程力学, 2018, 35(5): 75 − 85. doi: 10.6052/j.issn.1000-4750.2016.12.0997Zhu Lihua, Li Gang, Li Hongnan. Energy-based aseismic design for buildings with passive energy dissipation systems considering damage [J]. Engineering Mechanics, 2018, 35(5): 75 − 85. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.12.0997 [3] 陈云, 蒋欢军, 刘涛, 等. 分级屈服型金属阻尼器抗震性能研究[J]. 工程力学, 2019, 36(3): 53 − 62. doi: 10.6052/j.issn.1000-4750.2018.01.0036Chen Yun, Jiang Huanjun, Liu Tao, et al. Study on the seismic behavior of graded yielding metal dampers [J]. Engineering Mechanics, 2019, 36(3): 53 − 62. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.01.0036 [4] 吴从晓, 李定斌, 张骞, 等. PCF-MDC体系技术方案及抗震性能试验研究[J]. 工程力学, 2020, 37(4): 105 − 117. doi: 10.6052/j.issn.1000-4750.2019.06.0300Wu Congxiao, Li Dingbin, Zhang Qian, et al. Technical solution and seismic performance test of PCF-MDF system [J]. Engineering Mechanics, 2020, 37(4): 105 − 117. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.06.0300 [5] McCormick J, Aburano H, Ikenaga M, et al. Permissible residual deformation levels for building structures considering both safety and human elements [C]. In Proc. , 14th World Conf. Earthquake Engineering. Beijing: Seismological Press of China, 2008. [6] DesRoches R, McCormick J, Delemont M. Cyclic properties of superelastic shape memory alloy wires and bars [J]. Journal of Structural Engineering, 2004, 130(1): 38 − 46. doi: 10.1061/(ASCE)0733-9445(2004)130:1(38) [7] 李惠, 毛晨曦. 新型SMA耗能器及结构地震反应控制试验研究[J]. 地震工程与工程振动, 2004, 130(1): 38 − 46.Li Hui, Mao Chenxi. Experimental investigation of earthquake response reduction of buildings with added two types of SMA passive energy dissipation devices [J]. Earthquake Engineering and Engineering Vibration, 2004, 130(1): 38 − 46. (in Chinese) [8] 钱辉, 李宏男, 任文杰, 等. 形状记忆合金复合摩擦阻尼器设计及试验研究[J]. 建筑结构学报, 2011, 32(9): 58 − 64.Qian Hui, Li Hongnan, Ren Wenjie, et al. Experimental investigation of an innovative hybrid shape memory alloys friction damper [J]. Journal of Building Structures, 2011, 32(9): 58 − 64. (in Chinese) [9] Qiu C, Zhu S. Shake table test and numerical study of self-centering steel frame with SMA braces [J]. Earthquake Engineering & Structural Dynamics, 2017, 46(1): 117 − 137. [10] 孙彤, 李宏男. 新型多维形状记忆合金阻尼器的试验研究[J]. 工程力学, 2018, 35(3): 178 − 185. doi: 10.6052/j.issn.1000-4750.2016.11.0928Sun Tong, Li Hongnan. Experimental investigation of an innovative multidimensional SMA damper [J]. Engineering Mechanics, 2018, 35(3): 178 − 185. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.11.0928 [11] 黄宙, 李宏男, 付兴. 自复位放大位移型SMA阻尼器优化设计方法研究[J]. 工程力学, 2019, 36(6): 202 − 210. doi: 10.6052/j.issn.1000-4750.2018.05.0287Huang Zhou, Li Hongnan, Fu Xing. Optimum design of a re-centering deformation-amplified SMA damper [J]. Engineering Mechanics, 2019, 36(6): 202 − 210. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.05.0287 [12] Fang C, Wang W, Zhang A, et al. Behavior and design of self-centering energy dissipative devices equipped with superelastic SMA ring springs [J]. Journal of Structural Engineering, 2019, 145(10): 04019109. doi: 10.1061/(ASCE)ST.1943-541X.0002414 [13] Qiu C, Fang C, Liang D, et al. Behavior and application of self-centering dampers equipped with buckling-restrained SMA bars [J]. Smart Materials and Structures, 2020, 29(3): 035009. doi: 10.1088/1361-665X/ab6883 [14] Qiu C, Wang H, Liu J, et al. Experimental tests and finite element simulations of a new SMA-steel damper [J]. Smart Materials and Structures, 2020, 29(3): 035016. doi: 10.1088/1361-665X/ab6abd [15] 刘明明, 李宏男, 付兴. 一种新型自复位SMA-剪切型铅阻尼器的试验及其数值分析[J]. 工程力学, 2018, 35(6): 52 − 57, 67. doi: 10.6052/j.issn.1000-4750.2017.01.0066Liu Mingming, Li Hongnan, Fu Xing. Experimental and numerical analysis of an innovative re-centering shape memory alloys-shearing lead damper [J]. Engineering Mechanics, 2018, 35(6): 52 − 57, 67. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.01.0066 [16] 钱辉, 徐建, 朱俊涛, 等. 新型自复位连梁阻尼器设计及其力学性能数值模拟研究[J]. 世界地震工程, 2020, 36(4): 122 − 129.Qian Hui, Xu Jian, Zhu Juntao, et al. Numerical simulation of mechanical behaviors of the innovative self-centering coupling beam damper [J]. World Earthquake Engineering, 2020, 36(4): 122 − 129. (in Chinese) [17] 韩建平, 章全才. 新型自复位黏弹性阻尼支撑力学性能研究[J]. 工程力学, 2021, 38(1): 195 − 204. doi: 10.6052/j.issn.1000-4750.2020.03.0168Han Jianping, Zhang Quancai. The investigation on mechanical behavior of a new-type self-centering viscoelastic damping brace [J]. Engineering Mechanics, 2021, 38(1): 195 − 204. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.03.0168 [18] Hashemi A, Zarnani P, Masoudnia R, et al. Experimental testing of rocking cross-laminated timber walls with resilient slip friction joints [J]. Journal of Structural Engineering, 2018, 144(1): 04017180. doi: 10.1061/(ASCE)ST.1943-541X.0001931 [19] Hu S, Wang W, Qu B, et al. Development and validation test of a novel self-centering energy-absorbing dual rocking core (SEDRC) system for seismic resilience [J]. Engineering Structures, 2020, 211: 110424. [20] Zhang S, Hou H, Qu B, et al. Tests of a novel re-centering damper with SMA rods and friction wedges [J]. Engineering Structures, 2021, 236: 112125. doi: 10.1016/j.engstruct.2021.112125 [21] Qiu C, Liu J, Teng J, et al. Seismic performance evaluation of multi-story CBFs equipped with SMA-friction damping braces [J]. Journal of Intelligent Material Systems and Structures, 2021, https://doi.org/10.1177/1045389X20987000. [22] Loo W, Quenneville P, Chouw N. A new type of symmetric slip-friction connector [J]. Journal of Constructional Steel Research, 2014, 94: 11 − 22. doi: 10.1016/j.jcsr.2013.11.005 [23] Yam M, Fang C, Lam A, et al. Numerical study and practical design of beam-to-column connections with shape memory alloys [J]. Journal of Constructional Steel Research, 2015, 104: 177 − 192. doi: 10.1016/j.jcsr.2014.10.017 [24] 邓开来, 潘鹏, 陈浩文, 等. 滚轴式金属屈服耗能阻尼器数值模拟研究[J]. 工程力学, 2014, 31(6): 110 − 116. doi: 10.6052/j.issn.1000-4750.2012.12.0968Deng Kailai, Pan Peng, Chen Haowen, et al. Numerical investigation of roller steel damper for bridges [J]. Engineering Mechanics, 2014, 31(6): 110 − 116. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.12.0968 [25] Fang C, Yam M, Lam A, et al. Cyclic performance of extended end-plate connections equipped with shape memory alloy bolts [J]. Journal of Constructional Steel Research, 2014, 94: 122 − 136. doi: 10.1016/j.jcsr.2013.11.008 -