留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SMA滑动摩擦阻尼器的数值模拟及参数分析

邱灿星 刘家旺 杜修力

邱灿星, 刘家旺, 杜修力. SMA滑动摩擦阻尼器的数值模拟及参数分析[J]. 工程力学, 2022, 39(8): 69-79. doi: 10.6052/j.issn.1000-4750.2021.04.0305
引用本文: 邱灿星, 刘家旺, 杜修力. SMA滑动摩擦阻尼器的数值模拟及参数分析[J]. 工程力学, 2022, 39(8): 69-79. doi: 10.6052/j.issn.1000-4750.2021.04.0305
QIU Can-xing, LIU Jia-wang, DU Xiu-li. NUMERICAL SIMULATION AND PARAMETRIC STUDY OF SHAPE MEMORY ALLOY SLIP FRICTION DAMPERS[J]. Engineering Mechanics, 2022, 39(8): 69-79. doi: 10.6052/j.issn.1000-4750.2021.04.0305
Citation: QIU Can-xing, LIU Jia-wang, DU Xiu-li. NUMERICAL SIMULATION AND PARAMETRIC STUDY OF SHAPE MEMORY ALLOY SLIP FRICTION DAMPERS[J]. Engineering Mechanics, 2022, 39(8): 69-79. doi: 10.6052/j.issn.1000-4750.2021.04.0305

SMA滑动摩擦阻尼器的数值模拟及参数分析

doi: 10.6052/j.issn.1000-4750.2021.04.0305
基金项目: 国家自然科学基金项目(51808317,52178267)
详细信息
    作者简介:

    邱灿星(1987−),男,江西人,教授,博士,博导,主要从事地震工程领域研究(E-mail: qiucanxing@bjut.edu.cn)

    刘家旺(1996−),男,河北人,博士生,主要从事地震工程领域研究(E-mail: m18811044515@163.com)

    通讯作者:

    杜修力(1962−),男,四川人,教授,博士,博导,主要从事地震工程领域研究(E-mail: duxiuli@bjut.edu.cn)

  • 中图分类号: TU352.1

NUMERICAL SIMULATION AND PARAMETRIC STUDY OF SHAPE MEMORY ALLOY SLIP FRICTION DAMPERS

  • 摘要: 该文将超弹性形状记忆合金(shape memory alloy,SMA)螺栓和摩擦斜面结合,提出一种SMA滑动摩擦阻尼器(SMA slip friction damper,SMASFD)。介绍了SMASFD的基本构造和工作原理,给出描述滞回行为的理论公式,开展了概念验证试验,建立了三维实体单元有限元模型。试验数据和分析结果均表明,采用合理设计的斜面倾角和摩擦系数,阻尼器可展示出“旗帜形”滞回曲线,拥有良好的耗能能力和优越的自复位能力,并且理论公式和模拟结果均与试验数据吻合良好。基于已经验证的有限元模型,建立了6个额外的有限元模型进行参数分析,关键参数包括斜面倾角、摩擦系数和SMA螺栓的预紧力。参数分析结果表明:阻尼器的非线性变形集中于SMA螺栓内,其他部件保持弹性;增大斜面倾角可提高阻尼器的强度、割线刚度和耗能能力;当接触面间的摩擦系数较大时,阻尼器的耗能能力得到提高,但是超过上限值会导致阻尼器无法自复位;对SMA螺栓施加预紧力可提高阻尼器的初始刚度和割线刚度,但是会降低阻尼器的最大变形能力。
  • 图  1  SMA滑动摩擦阻尼器

    Figure  1.  SMASFD

    图  2  阻尼器的变形模式

    Figure  2.  Deformation mode of damper

    图  3  阻尼器的理想力学行为

    Figure  3.  Idealized mechanical behaviors of damper

    图  4  阻尼器的受力分析

    Figure  4.  Free body diagram of damper

    图  5  斜面倾角和摩擦系数对阻尼器正则化强度的影响

    Figure  5.  Effects of groove angle and friction coefficient on regularized strength of damper

    图  6  概念验证试验

    Figure  6.  Proof-of-concept test

    图  7  阻尼器的ABAQUS有限元模型

    Figure  7.  FE model of damper in ABAQUS

    图  8  SMA和钢材的本构模型

    Figure  8.  Constitutive models of SMA and steel

    图  9  SMA螺栓在往复拉伸下的滞回曲线

    Figure  9.  Hysteresis of SMA bolt under cyclic tensile loading

    图  10  阻尼器在最大变形时的应力和应变云图

    Figure  10.  Stress and strain contour plots of damper under maximum deformation

    图  11  数值模拟结果与理论计算结果的对比

    Figure  11.  Comparison of numerical simulation and analytical method

    图  12  关键滞回性能参数

    Figure  12.  Key parameters of hysteretic properties

    图  13  S3和S5中夹板和盖板的应力云图

    Figure  13.  Stress contour plots of cap and middle plates of S3 and S5

    图  14  斜面倾角的影响

    Figure  14.  Effect of groove angle

    图  15  摩擦系数的影响

    Figure  15.  Effect of friction coefficient

    图  16  SMA螺栓预紧力的影响

    Figure  16.  Effect of preloading level of SMA bolts

    图  17  预紧力的损失

    Figure  17.  Loss of preloading level

    图  18  S7的SMA螺栓轴力随循环次数的变化

    Figure  18.  Changes of axial force in SMA bolts of S7 with cycle loadings

    表  1  SMA的材料属性[23]

    Table  1.   Material properties of SMA[23]

    力学性能参数
    正相变起始应力σMs/MPa380
    正相变结束应力σMf/MPa490
    逆相变起始应力σAs/MPa220
    逆相变结束应力σAf/MPa120
    奥氏体模量EA/GPa50
    马氏体模量EM/GPa45
    相变应变εL/(%)5
    奥氏体泊松比νA0.33
    马氏体泊松比νM0.33
    下载: 导出CSV

    表  2  各模型参数

    Table  2.   Parameters of models

    模型编号设计参数滞回性能参数
    tanθμFpre/
    kN
    Fmax/
    kN
    $F_{\rm{max}}'$/
    kN
    Δmax/
    mm
    K/
    (kN/mm)
    WD/
    J
    ξ/
    (%)
    S1 0.3 0.15 0.0 63.6 18.9 16.7 3.8 1559.7 23.4
    S2 0.2 0.15 0.0 48.7 6.5 25.0 2.0 1962.9 25.6
    S3 0.4 0.15 0.0 79.6 31.1 12.5 6.4 1384.0 22.1
    S4 0.3 0.00 0.0 40.5 20.4 16.7 2.4 611.3 14.4
    S5 0.3 0.30 0.0 89.1 0.0 16.7 5.3 2549.4 27.3
    S6 0.3 0.15 17.5 63.6 18.9 15.9 4.0 1550.3 24.3
    S7 0.3 0.15 35.1 63.6 18.9 15.1 4.2 1478.2 24.4
    下载: 导出CSV
  • [1] 周颖, 吴浩, 顾安琪. 地震工程: 从抗震、减隔震到可恢复性[J]. 工程力学, 2019, 36(6): 1 − 12. doi: 10.6052/j.issn.1000-4750.2018.07.ST09

    Zhou Ying, Wu Hao, Gu Anqi. Earthquake engineering: From earthquake resistance, energy dissipation, and isolation, to resilience [J]. Engineering Mechanics, 2019, 36(6): 1 − 12. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.ST09
    [2] 朱立华, 李钢, 李宏男. 考虑结构损伤的消能减震结构能量设计方法[J]. 工程力学, 2018, 35(5): 75 − 85. doi: 10.6052/j.issn.1000-4750.2016.12.0997

    Zhu Lihua, Li Gang, Li Hongnan. Energy-based aseismic design for buildings with passive energy dissipation systems considering damage [J]. Engineering Mechanics, 2018, 35(5): 75 − 85. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.12.0997
    [3] 陈云, 蒋欢军, 刘涛, 等. 分级屈服型金属阻尼器抗震性能研究[J]. 工程力学, 2019, 36(3): 53 − 62. doi: 10.6052/j.issn.1000-4750.2018.01.0036

    Chen Yun, Jiang Huanjun, Liu Tao, et al. Study on the seismic behavior of graded yielding metal dampers [J]. Engineering Mechanics, 2019, 36(3): 53 − 62. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.01.0036
    [4] 吴从晓, 李定斌, 张骞, 等. PCF-MDC体系技术方案及抗震性能试验研究[J]. 工程力学, 2020, 37(4): 105 − 117. doi: 10.6052/j.issn.1000-4750.2019.06.0300

    Wu Congxiao, Li Dingbin, Zhang Qian, et al. Technical solution and seismic performance test of PCF-MDF system [J]. Engineering Mechanics, 2020, 37(4): 105 − 117. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.06.0300
    [5] McCormick J, Aburano H, Ikenaga M, et al. Permissible residual deformation levels for building structures considering both safety and human elements [C]. In Proc. , 14th World Conf. Earthquake Engineering. Beijing: Seismological Press of China, 2008.
    [6] DesRoches R, McCormick J, Delemont M. Cyclic properties of superelastic shape memory alloy wires and bars [J]. Journal of Structural Engineering, 2004, 130(1): 38 − 46. doi: 10.1061/(ASCE)0733-9445(2004)130:1(38)
    [7] 李惠, 毛晨曦. 新型SMA耗能器及结构地震反应控制试验研究[J]. 地震工程与工程振动, 2004, 130(1): 38 − 46.

    Li Hui, Mao Chenxi. Experimental investigation of earthquake response reduction of buildings with added two types of SMA passive energy dissipation devices [J]. Earthquake Engineering and Engineering Vibration, 2004, 130(1): 38 − 46. (in Chinese)
    [8] 钱辉, 李宏男, 任文杰, 等. 形状记忆合金复合摩擦阻尼器设计及试验研究[J]. 建筑结构学报, 2011, 32(9): 58 − 64.

    Qian Hui, Li Hongnan, Ren Wenjie, et al. Experimental investigation of an innovative hybrid shape memory alloys friction damper [J]. Journal of Building Structures, 2011, 32(9): 58 − 64. (in Chinese)
    [9] Qiu C, Zhu S. Shake table test and numerical study of self-centering steel frame with SMA braces [J]. Earthquake Engineering & Structural Dynamics, 2017, 46(1): 117 − 137.
    [10] 孙彤, 李宏男. 新型多维形状记忆合金阻尼器的试验研究[J]. 工程力学, 2018, 35(3): 178 − 185. doi: 10.6052/j.issn.1000-4750.2016.11.0928

    Sun Tong, Li Hongnan. Experimental investigation of an innovative multidimensional SMA damper [J]. Engineering Mechanics, 2018, 35(3): 178 − 185. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.11.0928
    [11] 黄宙, 李宏男, 付兴. 自复位放大位移型SMA阻尼器优化设计方法研究[J]. 工程力学, 2019, 36(6): 202 − 210. doi: 10.6052/j.issn.1000-4750.2018.05.0287

    Huang Zhou, Li Hongnan, Fu Xing. Optimum design of a re-centering deformation-amplified SMA damper [J]. Engineering Mechanics, 2019, 36(6): 202 − 210. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.05.0287
    [12] Fang C, Wang W, Zhang A, et al. Behavior and design of self-centering energy dissipative devices equipped with superelastic SMA ring springs [J]. Journal of Structural Engineering, 2019, 145(10): 04019109. doi: 10.1061/(ASCE)ST.1943-541X.0002414
    [13] Qiu C, Fang C, Liang D, et al. Behavior and application of self-centering dampers equipped with buckling-restrained SMA bars [J]. Smart Materials and Structures, 2020, 29(3): 035009. doi: 10.1088/1361-665X/ab6883
    [14] Qiu C, Wang H, Liu J, et al. Experimental tests and finite element simulations of a new SMA-steel damper [J]. Smart Materials and Structures, 2020, 29(3): 035016. doi: 10.1088/1361-665X/ab6abd
    [15] 刘明明, 李宏男, 付兴. 一种新型自复位SMA-剪切型铅阻尼器的试验及其数值分析[J]. 工程力学, 2018, 35(6): 52 − 57, 67. doi: 10.6052/j.issn.1000-4750.2017.01.0066

    Liu Mingming, Li Hongnan, Fu Xing. Experimental and numerical analysis of an innovative re-centering shape memory alloys-shearing lead damper [J]. Engineering Mechanics, 2018, 35(6): 52 − 57, 67. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.01.0066
    [16] 钱辉, 徐建, 朱俊涛, 等. 新型自复位连梁阻尼器设计及其力学性能数值模拟研究[J]. 世界地震工程, 2020, 36(4): 122 − 129.

    Qian Hui, Xu Jian, Zhu Juntao, et al. Numerical simulation of mechanical behaviors of the innovative self-centering coupling beam damper [J]. World Earthquake Engineering, 2020, 36(4): 122 − 129. (in Chinese)
    [17] 韩建平, 章全才. 新型自复位黏弹性阻尼支撑力学性能研究[J]. 工程力学, 2021, 38(1): 195 − 204. doi: 10.6052/j.issn.1000-4750.2020.03.0168

    Han Jianping, Zhang Quancai. The investigation on mechanical behavior of a new-type self-centering viscoelastic damping brace [J]. Engineering Mechanics, 2021, 38(1): 195 − 204. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.03.0168
    [18] Hashemi A, Zarnani P, Masoudnia R, et al. Experimental testing of rocking cross-laminated timber walls with resilient slip friction joints [J]. Journal of Structural Engineering, 2018, 144(1): 04017180. doi: 10.1061/(ASCE)ST.1943-541X.0001931
    [19] Hu S, Wang W, Qu B, et al. Development and validation test of a novel self-centering energy-absorbing dual rocking core (SEDRC) system for seismic resilience [J]. Engineering Structures, 2020, 211: 110424.
    [20] Zhang S, Hou H, Qu B, et al. Tests of a novel re-centering damper with SMA rods and friction wedges [J]. Engineering Structures, 2021, 236: 112125. doi: 10.1016/j.engstruct.2021.112125
    [21] Qiu C, Liu J, Teng J, et al. Seismic performance evaluation of multi-story CBFs equipped with SMA-friction damping braces [J]. Journal of Intelligent Material Systems and Structures, 2021, https://doi.org/10.1177/1045389X20987000.
    [22] Loo W, Quenneville P, Chouw N. A new type of symmetric slip-friction connector [J]. Journal of Constructional Steel Research, 2014, 94: 11 − 22. doi: 10.1016/j.jcsr.2013.11.005
    [23] Yam M, Fang C, Lam A, et al. Numerical study and practical design of beam-to-column connections with shape memory alloys [J]. Journal of Constructional Steel Research, 2015, 104: 177 − 192. doi: 10.1016/j.jcsr.2014.10.017
    [24] 邓开来, 潘鹏, 陈浩文, 等. 滚轴式金属屈服耗能阻尼器数值模拟研究[J]. 工程力学, 2014, 31(6): 110 − 116. doi: 10.6052/j.issn.1000-4750.2012.12.0968

    Deng Kailai, Pan Peng, Chen Haowen, et al. Numerical investigation of roller steel damper for bridges [J]. Engineering Mechanics, 2014, 31(6): 110 − 116. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.12.0968
    [25] Fang C, Yam M, Lam A, et al. Cyclic performance of extended end-plate connections equipped with shape memory alloy bolts [J]. Journal of Constructional Steel Research, 2014, 94: 122 − 136. doi: 10.1016/j.jcsr.2013.11.008
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  289
  • HTML全文浏览量:  112
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-22
  • 录用日期:  2021-11-12
  • 修回日期:  2021-08-24
  • 网络出版日期:  2021-11-12
  • 刊出日期:  2022-08-01

目录

    /

    返回文章
    返回