THE SECONDARY STRESS AT THE DETAILS OF ORTHOTROPIC BRIDGE DECKS INDUCED BY THERMAL GRADIENT UNDER SOLAR RADIATION
-
摘要: 为研究正交异性钢桥面板构造细节的日照温度次应力行为,多次在高温和强日照天气下现场实测了某自锚式悬索桥钢箱梁外周和实腹式横隔板上温度场,基于观测到的最大顶底板温差拟合了横隔板竖向温度梯度表达式;在ANSYS中建立了钢箱梁节段有限元模型并施加外周温度,计算其24 h温度场,并与横隔板实测竖向温度的对比校验了温度场模拟的合理性;开展了钢箱梁节段和子模型的精细化热应力分析,得到了纵肋−横隔板和弧形切口共4个构造细节的温度应力时程曲线。研究表明:在强太阳辐射和高温环境下,钢箱梁横向温差不明显,但存在明显的竖向温度梯度,横隔板竖向温度梯度可拟合为四折线形式,最大温差明显小于欧规值。正交异性钢桥面板产生热变形并在构造细节处产生明显热应力集中,特别是弧形切口热应力大。仅日照竖向温度梯度作用,或仅桥面货车通行加载,弧形切口均为无限疲劳寿命;但二者共同作用产生的应力幅,大于构造细节的常幅疲劳极限,可能是该构造细节出现疲劳开裂的原因。Abstract: To investigate the secondary stress at the details of orthotropic steel decks (OSD) induced by thermal gradient in steel box girders, the temperature field of the steel box girder of a self-anchored suspension bridge is measured for multiple times under high environmental temperature and strong solar radiation. The vertical temperature gradient is fitted based on the measured maximum temperature difference between the roof and the floor. After establishing the sectional box girder model in ANSYS with the measured temperature applied on the box-girder surface, the temperature field in the sectional model is obtained. The temperature results on the floor beam agree well with the measured temperature, which validate the thermal analysis. Based on the simulated 24 h temperature field, the thermal stress field in the sectional box girder is first analyzed. Refined stress results are obtained based on a sub-model technology. The thermal stress time histories are determined at the four details around rib-to-floor beam (RF) connection and the cutout detail. It is found that, under strong solar radiation and high environmental temperature, the transverse temperature difference in the steel-deck box girder is not apparent, while the vertical thermal gradient is significant and can be fitted as a four-broken-line function with the maximum temperature difference lower than that of the Eurocode. Significant stress concentration appears at the details of the OSD, particularly at the cutout detail. The cutout detail will be fatigue-free if the thermal stress range resulting from the vertical temperature under solar radiation is considered, or if the stress range resulting from the truck loading is considered. The stress range at the cutout detail, which is jointly produced by the thermal effect of the vertical temperature and by the truck loading, is larger than the constant-amplitude fatigue limit and may contribute to the fatigue crack at the cutout detail.
-
表 1 热效应分析参数
Table 1. Parameters used in analysis of thermal effects
参数 材料密度
ρ/(kg/m3)比热容
C/(J/(KG·℃)导热系数
k/(W/(m·℃))材料弹性模量
E/MPa泊松比ν 取值 7850 460 60.5 206 000 0.3 表 2 钢箱梁内温度
Table 2. Temperature in steel box girder
时刻 0:00 2:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 箱内
温度/(℃)37.3 35.2 32.6 32.0 34.6 35.8 36.2 38.8 41.3 40.8 39.9 表 3 4个构造细节热应力幅值
Table 3. Thermal stress range at four details
构造细节 应力最大值/MPa 应力最小值/MPa 应力幅计算值/MPa RF-F −4.6 −13.6 9.0 RF-R −14.6 −40.6 26.0 RF-W −5.9 −17.7 11.8 Cutout 39.2 1.5 37.6 -
[1] Leanne L, Keri L R, Ian G B. Bridge temperature profiles revisited: thermal analyses based on recent meteorological data from Nevada. [J]. Journal of Bridge Engineering, 2020, 25(1): 04019124. doi: 10.1061/(ASCE)BE.1943-5592.0001498 [2] Sushmita B E, Amin A H, Rolands K. The effect of temperature variation on bridges-a literature review [J]. Engineering Structures, 2021, 8(3): 207 − 212. [3] 刘永健, 刘江, 张宁. 桥梁结构日照温度作用研究综述[J]. 土木工程学报, 2019, 52(5): 59 − 78.Liu Yongjian, Liu Jiang, Zhang Ning. Summary of research on the effect of sunshine temperature on bridge structure [J]. China Civil Engineering Journal, 2019, 52(5): 59 − 78. (in Chinese) [4] Tong M, Tham L G, Au T K, et al. Numerical modelling for temperature distribution in steel bridges [J]. Computers and Structures, 2001, 79(6): 583 − 593. doi: 10.1016/S0045-7949(00)00161-9 [5] 张清华, 卜一之, 李乔. 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报, 2017, 30(3): 14 − 30. doi: 10.3969/j.issn.1001-7372.2017.03.002Zhang Qinghua, Bu Yizhi, Li Qiao. Review on fatigue problems of orthotropic steel bridge deck [J]. China Journal of Highway and Transport, 2017, 30(3): 14 − 30. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.03.002 [6] 王春生, 付炳宁, 张芹, 等. 正交异性钢桥面板足尺疲劳试验[J]. 中国公路学报, 2013, 26(2): 69 − 76. doi: 10.3969/j.issn.1001-7372.2013.02.011Wang Chunsheng, Fu Bingning, Zhang Qin, et al. Fatigue test on full-scale orthotropic steel bridge deck [J]. China Journal of Highway and Transport, 2013, 26(2): 69 − 76. (in Chinese) doi: 10.3969/j.issn.1001-7372.2013.02.011 [7] Fu Z, Ji B, Zhang C, et al. Experimental study on the fatigue performance of roof and U-rib welds of orthotropic steel bridge decks [J]. KSCE Journal of Civil Engineering, 2017(3): 1 − 9. [8] EN-1991-1-5: 2003, Eurocode 1: Actions on structures, Part 1-5: General actions-Therma actions [S]. Swiss: European Committee for Standardization, 2003. [9] 孙君, 李爱群, 丁幼亮. 润扬长江大桥钢箱梁的温度分布监测与分析[J]. 公路交通科技, 2009, 26(8): 94 − 98. doi: 10.3969/j.issn.1002-0268.2009.08.019Sun Jun, Li Aiqun, Ding Youliang. Temperature distribution monitoring and analysis of steel box girder of Runyang Yangtze River Bridge [J]. Journal of Highway and Transportation Research and Development, 2009, 26(8): 94 − 98. (in Chinese) doi: 10.3969/j.issn.1002-0268.2009.08.019 [10] 张玉平, 杨宁, 李传习. 无铺装层钢箱梁日照温度场分析[J]. 工程力学, 2011, 28(6): 156 − 162.Zhang Yuping, Yang Ning, Li Chuangxi. Analysis of sunshine temperature field of steel box girder without pavement [J]. Engineering Mechanics, 2011, 28(6): 156 − 162. (in Chinese) [11] 丁幼亮, 王高新, 周广东, 等. 基于长期监测数据的润扬大桥扁平钢箱梁温度分布特性[J]. 中国公路学报, 2013, 26(2): 94 − 101. doi: 10.3969/j.issn.1001-7372.2013.02.014Ding Youliang, Wang Gaoxin, Zhou Guangdong, et al. Temperature distribution characteristics of flat steel box girder of Runyang Bridge based on long-term monitoring data [J]. China Journal of Highway and Transport, 2013, 26(2): 94 − 101. (in Chinese) doi: 10.3969/j.issn.1001-7372.2013.02.014 [12] 郑宏利. 寒旱区正交异性板连续钢箱梁桥日照温度场研究[J]. 钢结构, 2013, 26(2): 94 − 101.Zheng Hongli. Study on sunshine temperature field of orthotropic slab continuous steel box girder bridge in cold and arid areas [J]. Steel Construction, 2013, 26(2): 94 − 101. (in Chinese) [13] Zhou L R, Xia Y, Brownjohn M W J, et al. Temperature analysis of a long-span suspension bridge [J]. Journal of Bridge Engineering, 2016, 21(1): 04015027. doi: 10.1061/(ASCE)BE.1943-5592.0000786 [14] Deng Y, Li A Q, Liu Y, et al. Investigation of temperature actions on flat steel box girders of long-span bridges with temperature monitoring data [J]. Advances in Structural Engineering, 2018, 21(4): 2099 − 2113. [15] Tao T Y, Wang H, Zhu Q X, et al. Long-term temperature field of steel-box girder of a long-span bridge: Measurement and simulation [J]. Engineering Structures, 2021, 236(1): 11924. [16] 刘瑜, 邵旭东. 轻型组合梁桥面板在日照作用下温度梯度效应研究[J]. 公路交通科技, 2015, 32(6): 54 − 61. doi: 10.3969/j.issn.1002-0268.2015.06.009Liu Yu, Shao Xudong. Study on temperature gradient effect of light composite beam deck under sunlight [J]. Journal of Highway and Transportation Research and Development, 2015, 32(6): 54 − 61. (in Chinese) doi: 10.3969/j.issn.1002-0268.2015.06.009 [17] 邓扬, 李爱群, 丁幼亮. 大跨悬索桥梁端位移与温度的相关性研究及应用[J]. 公路交通科技, 2009, 26(5): 54 − 58. doi: 10.3969/j.issn.1002-0268.2009.05.011Deng Yang, Li Aiqun, Ding Youliang. Research and application of correlation between beam end displacement and temperature of long span suspension bridge [J]. Journal of Highway and Transportation Research and Development, 2009, 26(5): 54 − 58. (in Chinese) doi: 10.3969/j.issn.1002-0268.2009.05.011 [18] Liu Y, Qian Z D, Hu J, et al. Temperature behavior and stability analysis of orthotropic steel bridge deck during gussasphalt pavement paving [J]. Journal of Bridge Engineering, 2018, 23(1): 04017117. doi: 10.1061/(ASCE)BE.1943-5592.0001163 [19] 王力, 牛思胜, 刘世忠, 等. 新型波形钢腹板组合箱梁桥温度效应研究[J]. 铁道科学与工程学报, 2020, 17(8): 2021 − 2029.Wang Li, Niu Sisheng, Liu Shizhong, et al. Research on thermal effect of new-pattern corrugated steel web composite box girder bridge [J]. Journal of Railway Science and Engineering, 2020, 17(8): 2021 − 2029. (in Chinese) [20] Zhu Z W, Xiang Z. Fatigue cracking investigation on diaphragm cutout in a self-anchored suspension bridge with orthotropic steel deck [J]. Structure and Infrastructure Engineering, 2019, 15(10): 1279 − 1291. doi: 10.1080/15732479.2019.1609528 [21] 王春生, 翟慕赛, 唐友明, 等. 钢桥面板疲劳裂纹耦合扩展机理的数值断裂力学模拟[J]. 中国公路学报, 2017, 30(3): 82 − 95. doi: 10.3969/j.issn.1001-7372.2017.03.009Wang Chunsheng, Zhai Musai, Tang Youming, et al. Numerical fracture mechanical simulation of fatigue crack coupled propagation mechanism for steel bridge deck [J]. China Journal of Highway and Transport, 2017, 30(3): 82 − 95. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.03.009 [22] 王春生, 翟慕赛, Houankpo T O N. 正交异性钢桥面板典型细节疲劳强度研究[J]. 工程力学, 2020, 37(8): 102 − 111. doi: 10.6052/j.issn.1000-4750.2019.09.0518Wang Chunsheng, Zhai Musai, Houankpo T O N. Fatigue strength of typical details in orthotropic steel bridge deck [J]. Engineering Mechanics, 2020, 37(8): 102 − 111. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.09.0518 [23] 黄云, 张清华, 郭亚文, 等. 钢桥面板纵肋与横隔板焊接细节表面缺陷及疲劳效应研究[J]. 工程力学, 2019, 36(3): 203 − 213, 223. doi: 10.6052/j.issn.1000-4750.2017.12.0973Huang Yun, Zhang Qinghua, Guo Yawen, et al. Research on surface defects and fatigue effects at rib-to-crossbeam welded joints of orthotropic steel bridge decks [J]. Engineering Mechanics, 2019, 36(3): 203 − 213, 223. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.12.0973 [24] 赵人达, 王永宝. 日照作用下混凝土箱梁温度场边界条件研究[J]. 中国公路学报, 2016, 29(7): 52 − 61. doi: 10.3969/j.issn.1001-7372.2016.07.007Zhao Renda, Wang Yongbao. Study on boundary conditions of temperature field of concrete box girder under sunlight [J]. China Journal of Highway and Transport, 2016, 29(7): 52 − 61. (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.07.007 [25] 陶文铨. 传热学[M]. 5版. 北京: 高等教育出版社, 2018.Tao Wenquan. Heat transfer [M]. 5rd ed. Beijing: Higher Education Press, 2018. (in Chinese) [26] AASHTO, LRFD bridge design specifications [S]. Washington D. C: American Association of State Highway and Transportation Officials, 2014. [27] 祝志文, 黄炎, 向泽. 货运繁重公路正交异性板钢桥弧形切口的疲劳性能[J]. 中国公路学报, 2017, 30(3): 104 − 112. doi: 10.3969/j.issn.1001-7372.2017.03.011Zhu Zhiwen, Huang Yan, Xiang Ze. Fatigue performance of floorbeam cutout detail of orthotropic steel bridge on heavy freight transportation highway [J]. China Journal of Highway and Transport, 2017, 30(3): 104 − 112. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.03.011 [28] 王石磊, 齐法琳, 柯在田, 等. 环氧沥青铺装对钢桥面板受力影响试验研究[J]. 工程力学, 2020, 37(10): 145 − 154. doi: 10.6052/j.issn.1000-4750.2019.11.0690Wang Shilei, Qi Falin, Ke Zaitian, et al. Experimental study on the effect of an epoxy asphalt concrete pavement on an orthotropic steel deck [J]. Engineering Mechanics, 2020, 37(10): 145 − 154. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.11.0690 [29] FHWA-IF-12-027, Manual for design, construction, and maintenance of orthotropic steel deck bridges [S]. Washington: Federal Highway Administration (FHWA), 2012. [30] Hobbacher A F. The new IIW recommendations for fatigue assessment of welded joints and components--a comprehensive code recently updated [J]. International Journal of Fatigue, 2009, 31(1): 50 − 58. [31] Downing S, Socie D F. Simple rainflow counting algorithms [J]. International Journal of Fatigue, 1982, 4(1): 31 − 40. doi: 10.1016/0142-1123(82)90018-4 -