留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

独柱墩-自浮式防船撞装置波浪荷载研究

王君杰 叶乔丹 王昌将

王君杰, 叶乔丹, 王昌将. 独柱墩-自浮式防船撞装置波浪荷载研究[J]. 工程力学, 2022, 39(8): 172-184. doi: 10.6052/j.issn.1000-4750.2021.04.0316
引用本文: 王君杰, 叶乔丹, 王昌将. 独柱墩-自浮式防船撞装置波浪荷载研究[J]. 工程力学, 2022, 39(8): 172-184. doi: 10.6052/j.issn.1000-4750.2021.04.0316
WANG Jun-jie, YE Qiao-dan, WANG Chang-jiang. WAVE LOAD ON COUPLING SYSTEM OF SINGLE COLUMN PIER AND SELF-FLOATING ANTI-COLLISION DEVICE[J]. Engineering Mechanics, 2022, 39(8): 172-184. doi: 10.6052/j.issn.1000-4750.2021.04.0316
Citation: WANG Jun-jie, YE Qiao-dan, WANG Chang-jiang. WAVE LOAD ON COUPLING SYSTEM OF SINGLE COLUMN PIER AND SELF-FLOATING ANTI-COLLISION DEVICE[J]. Engineering Mechanics, 2022, 39(8): 172-184. doi: 10.6052/j.issn.1000-4750.2021.04.0316

独柱墩-自浮式防船撞装置波浪荷载研究

doi: 10.6052/j.issn.1000-4750.2021.04.0316
基金项目: 国家自然科学基金项目(51778498,52078384)
详细信息
    作者简介:

    王君杰(1962−),男,辽宁本溪人,教授,博士,主要从事桥梁抗震及防撞研究(E-mail: jjqxu@126.com)

    王昌将(1971−),男,浙江宁波人,正高工,学士,浙江省工程勘察设计大师,主要从事桥梁工程设计研究(E-mail: 1210725965@qq.com)

    通讯作者:

    叶乔丹(1996−),女,浙江宁波人,硕士,主要从事桥梁防撞研究(E-mail: yqd134167@163.com)

  • 中图分类号: U441+.2

WAVE LOAD ON COUPLING SYSTEM OF SINGLE COLUMN PIER AND SELF-FLOATING ANTI-COLLISION DEVICE

  • 摘要: 针对独柱墩-自浮式防船撞装置耦合体系,开展室内波浪力试验并总结相关规律,利用试验结果验证校准AQWA数值模型。根据结构所受波浪压强的分布情况,利用Morison公式提取相应的荷载并得到结构水动力系数。考虑波浪高度、波浪周期、防撞装置断面形式和大小、防撞装置自浮比等影响因素,计算结构惯性力系数和接触力系数与相关因素的定量关系。研究表明:自浮式防撞装置起伏运动产生辐射波浪,使墩柱波压强数值偏大但不改变总体分布趋势。结构间接触力随机变化,可把结构接触力与墩柱波浪力之间的比值定义为接触力系数。计算得耦合体系中墩柱的惯性力系数达到2.175左右,防撞装置的惯性力系数达到2.125左右,接触力系数达到1.340左右。
  • 图  1  防撞装置模型断面 /cm

    Figure  1.  Model section of anti-collision device

    图  2  护舷模型三视图 /cm

    Figure  2.  Three views of fender model

    图  3  整体试验模型示意 /cm

    Figure  3.  Diagram of test model

    图  4  模型实物图

    Figure  4.  Physical model

    图  5  压强测点布置图 /cm

    Figure  5.  Arrangement of pressure measuring points

    图  6  试验照片

    Figure  6.  Photo of test

    图  7  防撞装置运动位移

    Figure  7.  Displacement of anti-collision device

    图  8  结构接触力-时间曲线

    Figure  8.  Curve of contact force-time

    图  9  墩柱迎浪面波压强-高度图

    Figure  9.  Diagram of pressure-height of pier column

    图  10  AQWA几何模型示意图

    Figure  10.  Diagram of AQWA geometric model

    图  11  AQWA网格划分示意图

    Figure  11.  Diagram of AQWA meshing

    图  12  自浮式防船撞装置运动形态

    Figure  12.  Motion pattern of self-floating anti-collision device

    图  13  波面-时程曲线对比

    Figure  13.  Comparison of time history curves of wave surface

    图  14  墩柱X向接触力-时程曲线

    Figure  14.  Time history curve of pier column contact force on X-direction

    图  15  防撞装置压强云图

    Figure  15.  Pressure of anti-collision device

    图  16  防撞装置横剖面压强极坐标图

    Figure  16.  Polar diagram of pressure in cross section of anti-collision device

    图  17  结构波压强分布 /kPa

    Figure  17.  Wave pressure distribution of structure

    图  18  单位高度压力分布 /(N/m)

    Figure  18.  Pressure distribution of unit height

    图  19  墩柱惯性力系数分布

    Figure  19.  Distribution of inertia force coefficient of pier column

    图  20  墩柱惯性力系数${C_{\rm{M}}}$与波高系数KH关系

    Figure  20.  Relationship between ${C_{\rm{M}}}$ of pier and KH

    图  21  墩柱惯性力系数${C_{\rm{M}}}$与周期系数KT关系

    Figure  21.  Relationship between ${C_{\rm{M}}}$ of pier and KT

    图  22  墩柱惯性力系数${C_{\rm{M}}}$与尺寸系数KD关系

    Figure  22.  Relationship between ${C_{\rm{M}}}$ of pier and KD

    图  23  墩柱惯性力系数${C_{\rm{M}}}$与自浮比关系

    Figure  23.  Relationship between ${C_{\rm{M}}}$ of pier and self-floating ratio of device

    图  24  装置惯性力系数${C{\rm{_M}}}$与波高系数KH关系

    Figure  24.  Relationship between ${C_{\rm{M}}}$ of device and KH

    图  25  装置惯性力系数${C{\rm{_M}}}$与周期系数KT关系

    Figure  25.  Relationship between ${C_{\rm{M}}}$ of device and KT

    图  26  装置惯性力系数${C_{\rm{M}}}$与尺寸系数KD关系

    Figure  26.  Relationship between ${C_{\rm{M}}}$ of device and KD

    图  27  装置惯性力系数${C_{\rm{M}}}$与自浮比关系

    Figure  27.  Relationship between ${C_{\rm{M}}}$ and self-floating ratio of device

    图  28  接触力系数${\xi _{\rm{F}}}$与波高系数KH关系

    Figure  28.  Relationship between ${\xi _{\rm{F}}}$ and KH

    图  29  接触力系数${\xi _{\rm{F}}}$与周期系数KT关系

    Figure  29.  Relationship between ${\xi _{\rm{F}}}$ and KT

    图  30  接触力系数${\xi _{\rm{F}}}$与尺寸系数KD关系

    Figure  30.  Relationship between ${\xi _{\rm{F}}}$ and KD

    图  31  接触力系数${\xi _{\rm{F}}}$与装置自浮比关系

    Figure  31.  Relationship between ${\xi _{\rm{F}}}$ and self-floating ratio of device

    表  1  墩柱-防撞装置迎浪面接触力

    Table  1.   Contact force of pier column with anti-collision device

    波浪接触力/N
    H0.04
    T1.20
    H0.06
    T1.20
    H0.08
    T1.20
    H0.06
    T1.15
    H0.06
    T1.06
    矩0.36.4777.5439.0189.1539.986
    矩0.57.8848.59710.15210.08912.146
    方0.56.5218.0169.2789.45110.057
    圆0.53.0584.8985.2775.2235.910
    下载: 导出CSV

    表  2  数值计算与公式计算的误差分析

    Table  2.   Error analysis of numerical calculation and formula calculation

    内容数值计算公式计算相对误差
    墩柱X向波浪力/kN306.827298.562−2.694
    装置X向波浪力/kN35.75133.458−6.414
    墩柱X向接触力/kN418.584441.5435.485
    下载: 导出CSV
  • [1] 魏凯, 周聪, 徐博. 跨海桥梁高桩承台波浪冲击荷载概率模型[J]. 工程力学, 2020, 37(6): 216 − 224. doi: 10.6052/j.issn.1000-4750.2019.08.0500

    Wei Kai, Zhou Cong, Xu Bo. Probability model of wave impact load on the elevated pile cap for sea-crossing bridges [J]. Engineering Mechanics, 2020, 37(6): 216 − 224. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.08.0500
    [2] Yang Wanli, Li Ao, Deng Liwen, et al. Study on characteristics and calculation method of hydrodynamic force on pile group under earthquake [J]. Ocean Engineering, 2020, 207: 107375. doi: 10.1016/j.oceaneng.2020.107375
    [3] Campbell D. Effects of ice loads on the confederation bridge [J]. Proto-Type, 2013, 13(1): 1 − 7.
    [4] Combault J. The Rion-Antirion bridge—When a dream becomes reality [J]. Frontiers of Architecture & Civil Engineering in China, 2011, 5(4): 415 − 426.
    [5] 王仁贵, 曹宗勇, 伏首圣, 等. 嘉绍大桥水中区引桥结构体系研究[J]. 公路, 2013(5): 226 − 229. doi: 10.3969/j.issn.0451-0712.2013.05.054

    Wang Rengui, Cao Zongyong, Fu Shousheng, et al. Study on structural system of approach bridge in water area of Jiashao Bridge [J]. Highway, 2013(5): 226 − 229. (in Chinese) doi: 10.3969/j.issn.0451-0712.2013.05.054
    [6] 宋卫国, 伏首圣, 程德林. 嘉绍跨江大桥水中区引桥单桩独柱墩设计[J]. 桥梁建设, 2010, 40(增刊 1): 15 − 17.

    Song Weiguo, Fu Shousheng, Cheng Delin. Design of single pile and single column pier of approach bridge in water area of Jiashao River Crossing Bridge [J]. Bridge Construction, 2010, 40(Suppl 1): 15 − 17. (in Chinese)
    [7] 俞益铭. 海上风电大直径单桩基础设计研究 [D]. 天津: 天津大学, 2012.

    Yu Yiming. Design of large diameter single pile foundation for offshore wind power [D]. Tianjin: Tianjin University, 2012. (in Chinese)
    [8] 邓江源. 桥梁波浪力计算方法比较研究[D]. 成都: 西南交通大学, 2016.

    Deng Jiangyuan. Comparative study on calculation methods of bridge wave force [D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese)
    [9] 房忱, 李永乐, 秦顺全, 等. 中、美、英规范关于跨海桥梁桩基波浪力的对比[J]. 桥梁建设, 2016, 46(6): 94 − 99.

    Fang Chen, Li Yongle, Qin Shunquan, et al. Comparison of wave forces on pile foundations of sea crossing bridges among Chinese, American and British Codes [J]. Bridge Construction, 2016, 46(6): 94 − 99. (in Chinese)
    [10] Yuan Z D, Huang Z H. An experimental study of inertia and drag coefficients for a truncated circular cylinder in regular waves [J]. Journal of Hydrodynamics Ser B, 2010, 22(5): 318 − 323. doi: 10.1016/S1001-6058(09)60258-4
    [11] 仇正中, 刘建波, 代浩. 高桩承台桩基波浪荷载试验研究[J]. 中国港湾建设, 2017, 37(2): 48 − 52. doi: 10.7640/zggwjs201702010

    Qiu Zhengzhong, Liu Jianbo, Dai Hao. Experimental study on wave load of high pile cap foundation [J]. China Harbour Engineering, 2017, 37(2): 48 − 52. (in Chinese) doi: 10.7640/zggwjs201702010
    [12] 雷欣欣, 孙大鹏, 徐雪蛟, 等. 作用在高桩承台上的不规则波波浪力试验研究[J]. 水道港口, 2013, 34(4): 277 − 284. doi: 10.3969/j.issn.1005-8443.2013.04.001

    Lei Xinxin, Sun Dapeng, Xu Xuejiao, et al. Experimental study on irregular wave forces acting on high pile caps [J]. Waterway and Harbor, 2013, 34(4): 277 − 284. (in Chinese) doi: 10.3969/j.issn.1005-8443.2013.04.001
    [13] 季新然, 邹丽, 柳淑学, 等. 多向不规则波浪 作用下群墩结构所受波浪力的实验研究[J]. 工程力学, 2019, 36(10): 238 − 243. doi: 10.6052/j.issn.1000-4750.2018.07.0399

    Ji Xinran, Zou Li, Liu Shuxue, et al. Experimental study on the multidirectional wave force on an array of cylinders [J]. Engineering Mechanics, 2019, 36(10): 238 − 243. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.0399
    [14] 王钰, 纪巧玲, 刘庆凯. 规则波作用下导桩锚泊的浮防波堤水动力特性的数值模拟[J]. 工程力学, 2019, 36(增刊): 268 − 271, 284. doi: 10.6052/j.issn.1000-4750.2018.07.S052

    Wang Yu, Ji Qiaoling, Liu Qingkai. Numerical study on the hydrodynamic performance of vertical pile-restrained floating breakwaters under regular waves [J]. Engineering Mechanics, 2019, 36(Suppl): 268 − 271, 284. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.S052
    [15] Zhou Xuanyi, Zhang Tiange, Ma Wenyong, et al. CFD simulation of snow redistribution on a bridge deck: Effect of barriers with different porosities [J]. Cold Regions Science and Technology, 2020, 181: 103174.
    [16] 李凤莲, 候雨潇, 魏紫娟. 一种浮动式防船撞装置[P]. CN: 208219562U, 2018-12-11.

    Li Fenglian, Hou Yuxiao, Wei Zijuan. A floating anti-collision device [P]. CN: 208219562U, 2018-12-11. (in Chinese)
    [17] 王红梅. 新型桥墩防船撞装置的性能研究[D]. 重庆: 重庆交通大学, 2013.

    Wang Hongmei. Study on the performance of a new type of bridge pier anti-collision device [D]. Chongqing: Chongqing Jiaotong University, 2013. (in Chinese)
    [18] 王倩, 陈亮, 王君杰, 等. 松浦大桥新型浮式防船撞装置[J]. 中国市政工程, 2020, 209(2): 106 − 118.

    Wang Qian, Chen Liang, Wang Junjie, et al. New floating anti-collision device for Songpu Bridge [J]. China Municipal Engineering, 2020, 209(2): 106 − 118. (in Chinese)
    [19] 桑松, 徐学军. 海洋浮体结构非线性运动响应研究综述[J]. 武汉大学学报(工学版), 2010, 43(5): 608 − 612.

    Sang Song, Xu Xuejun. Review on nonlinear motion response of floating structures [J]. Journal of Wuhan University (Engineering Edition), 2010, 43(5): 608 − 612. (in Chinese)
    [20] 马山, 赵彬彬, 廖康平. 海洋浮体水动力学与运动性能[M]. 哈尔滨: 哈尔滨工业大学出版社, 2019.

    Ma Shan, Zhao Binbin, Liao Kangping. Hydrodynamics and Motion Performance of Floating Bodies [M]. Harbin: Harbin Engineering University Press, 2019. (in Chinese)
    [21] 顾海英. 超大型浮体波浪载荷特性研究[D]. 江苏: 江苏科技大学, 2015.

    Gu Haiying. Study on wave load characteristics of super large floating body [D]. Jiangsu: Jiangsu University of Science and Technology, 2015. (in Chinese)
    [22] 郭超. 桥墩冲刷与波流力的试验研究[D]. 北京: 清华大学, 2012.

    Guo Chao. Experimental study on pier scour and wave current force [D]. Beijing: Tsinghua University, 2012. (in Chinese)
    [23] 潘军宁, 王登婷. 杭州湾大桥工程桥梁基础波流力模型试验研究报告[R]. 南京: 南京水利科学研究院, 2003.

    Pan Junning, Wang Dengting. Experimental report of wave current bridge foundation in Hangzhou Bay [R]. Nanjing: Nanjing Hydraulic Research Institute, 2003. (in Chinese)
    [24] 高巍. ANSYS AQWA 软件入门与提高[M]. 北京: 中国水利水电出版社, 2018.

    Gao Wei. Introduction and improvement of ANSYS AQWA software [M]. Beijing: China Water & Power Press, 2018. (in Chinese)
    [25] 刘慧杰, 赵东晓, 黄勇, 等. 地震激发的刚性块体惯性水动力系数经验公式[J]. 世界地震工程, 2016, 32(4): 140 − 149.

    Liu Huijie, Zhao Dongxiao, Huang Yong, et al. Empirical formula of inertial hydrodynamic coefficient of rigid block excited by earthquake [J]. World Earthquake Engineering, 2016, 32(4): 140 − 149. (in Chinese)
    [26] 孟昂, 桂福坤, 姚晓杰, 等. 波浪条件下养殖浮球水动力系数的试验研究[J]. 水动力学研究与进展, 2015, 30(5): 587 − 595.

    Meng Ang, Gui Fukun, Yao Xiaojie, et al. Experimental study on hydrodynamic coefficient of cultured floating ball under wave condition [J]. Journal of Hydrodynamics, 2015, 30(5): 587 − 595. (in Chinese)
  • 加载中
图(31) / 表(2)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  40
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-26
  • 修回日期:  2021-10-07
  • 网络出版日期:  2021-10-21
  • 刊出日期:  2022-08-01

目录

    /

    返回文章
    返回