WAVE LOAD ON COUPLING SYSTEM OF SINGLE COLUMN PIER AND SELF-FLOATING ANTI-COLLISION DEVICE
-
摘要: 针对独柱墩-自浮式防船撞装置耦合体系,开展室内波浪力试验并总结相关规律,利用试验结果验证校准AQWA数值模型。根据结构所受波浪压强的分布情况,利用Morison公式提取相应的荷载并得到结构水动力系数。考虑波浪高度、波浪周期、防撞装置断面形式和大小、防撞装置自浮比等影响因素,计算结构惯性力系数和接触力系数与相关因素的定量关系。研究表明:自浮式防撞装置起伏运动产生辐射波浪,使墩柱波压强数值偏大但不改变总体分布趋势。结构间接触力随机变化,可把结构接触力与墩柱波浪力之间的比值定义为接触力系数。计算得耦合体系中墩柱的惯性力系数达到2.175左右,防撞装置的惯性力系数达到2.125左右,接触力系数达到1.340左右。Abstract: The indoor wave force test on the coupling system of single column pier and self-floating anti-collision device was carried out. The AQWA numerical model was verified and calibrated by the test results. According to the distribution of wave pressure on the structure, the corresponding load and the structural hydrodynamic coefficient were extracted by Morison formula. Considering the influencing factors such as wave height, wave period, section form, size of anti-collision device and self-floating ratio of device, the quantitative relationship between force coefficient and relevant factors was established. The test results show that the motion of the self-floating device produces radiation wave, which makes the wave pressure of the pier larger. The ratio between the contact force and the wave force can be defined as the contact force coefficient. The calculated results show that the inertia force coefficient of the pier is about 2.175, the inertia force coefficient of the anti-collision device is about 2.125, and the contact force coefficient is about 1.340.
-
表 1 墩柱-防撞装置迎浪面接触力
Table 1. Contact force of pier column with anti-collision device
波浪 接触力/N H0.04
T1.20H0.06
T1.20H0.08
T1.20H0.06
T1.15H0.06
T1.06矩0.3 6.477 7.543 9.018 9.153 9.986 矩0.5 7.884 8.597 10.152 10.089 12.146 方0.5 6.521 8.016 9.278 9.451 10.057 圆0.5 3.058 4.898 5.277 5.223 5.910 表 2 数值计算与公式计算的误差分析
Table 2. Error analysis of numerical calculation and formula calculation
内容 数值计算 公式计算 相对误差 墩柱X向波浪力/kN 306.827 298.562 −2.694 装置X向波浪力/kN 35.751 33.458 −6.414 墩柱X向接触力/kN 418.584 441.543 5.485 -
[1] 魏凯, 周聪, 徐博. 跨海桥梁高桩承台波浪冲击荷载概率模型[J]. 工程力学, 2020, 37(6): 216 − 224. doi: 10.6052/j.issn.1000-4750.2019.08.0500Wei Kai, Zhou Cong, Xu Bo. Probability model of wave impact load on the elevated pile cap for sea-crossing bridges [J]. Engineering Mechanics, 2020, 37(6): 216 − 224. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.08.0500 [2] Yang Wanli, Li Ao, Deng Liwen, et al. Study on characteristics and calculation method of hydrodynamic force on pile group under earthquake [J]. Ocean Engineering, 2020, 207: 107375. doi: 10.1016/j.oceaneng.2020.107375 [3] Campbell D. Effects of ice loads on the confederation bridge [J]. Proto-Type, 2013, 13(1): 1 − 7. [4] Combault J. The Rion-Antirion bridge—When a dream becomes reality [J]. Frontiers of Architecture & Civil Engineering in China, 2011, 5(4): 415 − 426. [5] 王仁贵, 曹宗勇, 伏首圣, 等. 嘉绍大桥水中区引桥结构体系研究[J]. 公路, 2013(5): 226 − 229. doi: 10.3969/j.issn.0451-0712.2013.05.054Wang Rengui, Cao Zongyong, Fu Shousheng, et al. Study on structural system of approach bridge in water area of Jiashao Bridge [J]. Highway, 2013(5): 226 − 229. (in Chinese) doi: 10.3969/j.issn.0451-0712.2013.05.054 [6] 宋卫国, 伏首圣, 程德林. 嘉绍跨江大桥水中区引桥单桩独柱墩设计[J]. 桥梁建设, 2010, 40(增刊 1): 15 − 17.Song Weiguo, Fu Shousheng, Cheng Delin. Design of single pile and single column pier of approach bridge in water area of Jiashao River Crossing Bridge [J]. Bridge Construction, 2010, 40(Suppl 1): 15 − 17. (in Chinese) [7] 俞益铭. 海上风电大直径单桩基础设计研究 [D]. 天津: 天津大学, 2012.Yu Yiming. Design of large diameter single pile foundation for offshore wind power [D]. Tianjin: Tianjin University, 2012. (in Chinese) [8] 邓江源. 桥梁波浪力计算方法比较研究[D]. 成都: 西南交通大学, 2016.Deng Jiangyuan. Comparative study on calculation methods of bridge wave force [D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese) [9] 房忱, 李永乐, 秦顺全, 等. 中、美、英规范关于跨海桥梁桩基波浪力的对比[J]. 桥梁建设, 2016, 46(6): 94 − 99.Fang Chen, Li Yongle, Qin Shunquan, et al. Comparison of wave forces on pile foundations of sea crossing bridges among Chinese, American and British Codes [J]. Bridge Construction, 2016, 46(6): 94 − 99. (in Chinese) [10] Yuan Z D, Huang Z H. An experimental study of inertia and drag coefficients for a truncated circular cylinder in regular waves [J]. Journal of Hydrodynamics Ser B, 2010, 22(5): 318 − 323. doi: 10.1016/S1001-6058(09)60258-4 [11] 仇正中, 刘建波, 代浩. 高桩承台桩基波浪荷载试验研究[J]. 中国港湾建设, 2017, 37(2): 48 − 52. doi: 10.7640/zggwjs201702010Qiu Zhengzhong, Liu Jianbo, Dai Hao. Experimental study on wave load of high pile cap foundation [J]. China Harbour Engineering, 2017, 37(2): 48 − 52. (in Chinese) doi: 10.7640/zggwjs201702010 [12] 雷欣欣, 孙大鹏, 徐雪蛟, 等. 作用在高桩承台上的不规则波波浪力试验研究[J]. 水道港口, 2013, 34(4): 277 − 284. doi: 10.3969/j.issn.1005-8443.2013.04.001Lei Xinxin, Sun Dapeng, Xu Xuejiao, et al. Experimental study on irregular wave forces acting on high pile caps [J]. Waterway and Harbor, 2013, 34(4): 277 − 284. (in Chinese) doi: 10.3969/j.issn.1005-8443.2013.04.001 [13] 季新然, 邹丽, 柳淑学, 等. 多向不规则波浪 作用下群墩结构所受波浪力的实验研究[J]. 工程力学, 2019, 36(10): 238 − 243. doi: 10.6052/j.issn.1000-4750.2018.07.0399Ji Xinran, Zou Li, Liu Shuxue, et al. Experimental study on the multidirectional wave force on an array of cylinders [J]. Engineering Mechanics, 2019, 36(10): 238 − 243. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.0399 [14] 王钰, 纪巧玲, 刘庆凯. 规则波作用下导桩锚泊的浮防波堤水动力特性的数值模拟[J]. 工程力学, 2019, 36(增刊): 268 − 271, 284. doi: 10.6052/j.issn.1000-4750.2018.07.S052Wang Yu, Ji Qiaoling, Liu Qingkai. Numerical study on the hydrodynamic performance of vertical pile-restrained floating breakwaters under regular waves [J]. Engineering Mechanics, 2019, 36(Suppl): 268 − 271, 284. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.S052 [15] Zhou Xuanyi, Zhang Tiange, Ma Wenyong, et al. CFD simulation of snow redistribution on a bridge deck: Effect of barriers with different porosities [J]. Cold Regions Science and Technology, 2020, 181: 103174. [16] 李凤莲, 候雨潇, 魏紫娟. 一种浮动式防船撞装置[P]. CN: 208219562U, 2018-12-11.Li Fenglian, Hou Yuxiao, Wei Zijuan. A floating anti-collision device [P]. CN: 208219562U, 2018-12-11. (in Chinese) [17] 王红梅. 新型桥墩防船撞装置的性能研究[D]. 重庆: 重庆交通大学, 2013.Wang Hongmei. Study on the performance of a new type of bridge pier anti-collision device [D]. Chongqing: Chongqing Jiaotong University, 2013. (in Chinese) [18] 王倩, 陈亮, 王君杰, 等. 松浦大桥新型浮式防船撞装置[J]. 中国市政工程, 2020, 209(2): 106 − 118.Wang Qian, Chen Liang, Wang Junjie, et al. New floating anti-collision device for Songpu Bridge [J]. China Municipal Engineering, 2020, 209(2): 106 − 118. (in Chinese) [19] 桑松, 徐学军. 海洋浮体结构非线性运动响应研究综述[J]. 武汉大学学报(工学版), 2010, 43(5): 608 − 612.Sang Song, Xu Xuejun. Review on nonlinear motion response of floating structures [J]. Journal of Wuhan University (Engineering Edition), 2010, 43(5): 608 − 612. (in Chinese) [20] 马山, 赵彬彬, 廖康平. 海洋浮体水动力学与运动性能[M]. 哈尔滨: 哈尔滨工业大学出版社, 2019.Ma Shan, Zhao Binbin, Liao Kangping. Hydrodynamics and Motion Performance of Floating Bodies [M]. Harbin: Harbin Engineering University Press, 2019. (in Chinese) [21] 顾海英. 超大型浮体波浪载荷特性研究[D]. 江苏: 江苏科技大学, 2015.Gu Haiying. Study on wave load characteristics of super large floating body [D]. Jiangsu: Jiangsu University of Science and Technology, 2015. (in Chinese) [22] 郭超. 桥墩冲刷与波流力的试验研究[D]. 北京: 清华大学, 2012.Guo Chao. Experimental study on pier scour and wave current force [D]. Beijing: Tsinghua University, 2012. (in Chinese) [23] 潘军宁, 王登婷. 杭州湾大桥工程桥梁基础波流力模型试验研究报告[R]. 南京: 南京水利科学研究院, 2003.Pan Junning, Wang Dengting. Experimental report of wave current bridge foundation in Hangzhou Bay [R]. Nanjing: Nanjing Hydraulic Research Institute, 2003. (in Chinese) [24] 高巍. ANSYS AQWA 软件入门与提高[M]. 北京: 中国水利水电出版社, 2018.Gao Wei. Introduction and improvement of ANSYS AQWA software [M]. Beijing: China Water & Power Press, 2018. (in Chinese) [25] 刘慧杰, 赵东晓, 黄勇, 等. 地震激发的刚性块体惯性水动力系数经验公式[J]. 世界地震工程, 2016, 32(4): 140 − 149.Liu Huijie, Zhao Dongxiao, Huang Yong, et al. Empirical formula of inertial hydrodynamic coefficient of rigid block excited by earthquake [J]. World Earthquake Engineering, 2016, 32(4): 140 − 149. (in Chinese) [26] 孟昂, 桂福坤, 姚晓杰, 等. 波浪条件下养殖浮球水动力系数的试验研究[J]. 水动力学研究与进展, 2015, 30(5): 587 − 595.Meng Ang, Gui Fukun, Yao Xiaojie, et al. Experimental study on hydrodynamic coefficient of cultured floating ball under wave condition [J]. Journal of Hydrodynamics, 2015, 30(5): 587 − 595. (in Chinese) -