留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不等跨RC框架的抗连续倒塌理论分析及鲁棒性评判指标研究

甘艺平 喻君 陈隽 申家旭

甘艺平, 喻君, 陈隽, 申家旭. 不等跨RC框架的抗连续倒塌理论分析及鲁棒性评判指标研究[J]. 工程力学, 2022, 39(8): 210-222. doi: 10.6052/j.issn.1000-4750.2021.04.0324
引用本文: 甘艺平, 喻君, 陈隽, 申家旭. 不等跨RC框架的抗连续倒塌理论分析及鲁棒性评判指标研究[J]. 工程力学, 2022, 39(8): 210-222. doi: 10.6052/j.issn.1000-4750.2021.04.0324
GAN Yi-ping, YU Jun, CHEN Jun, SHEN Jia-xu. STUDY ON ANALYTICAL MODEL AND ROBUSTNESS RANKING INDEX OF RC FRAMES WITH UNEQUAL SPANS AGAINST PROGRESSIVE COLLAPSE[J]. Engineering Mechanics, 2022, 39(8): 210-222. doi: 10.6052/j.issn.1000-4750.2021.04.0324
Citation: GAN Yi-ping, YU Jun, CHEN Jun, SHEN Jia-xu. STUDY ON ANALYTICAL MODEL AND ROBUSTNESS RANKING INDEX OF RC FRAMES WITH UNEQUAL SPANS AGAINST PROGRESSIVE COLLAPSE[J]. Engineering Mechanics, 2022, 39(8): 210-222. doi: 10.6052/j.issn.1000-4750.2021.04.0324

不等跨RC框架的抗连续倒塌理论分析及鲁棒性评判指标研究

doi: 10.6052/j.issn.1000-4750.2021.04.0324
基金项目: 国家自然科学基金重点项目(U1711264);土木工程防灾国家重点实验室项目(SLDRCE19-B-22)
详细信息
    作者简介:

    甘艺平(1995−),男,福建人,博士生,主要从事结构抗连续性倒塌研究(E-mail: ganyiping777@163.com)

    喻 君(1982−),男,浙江人,教授,博士,主要从事结构抗连续性倒塌、结构抗冲击研究(E-mail: yujun@hhu.edu.cn)

    申家旭(1995−),男,山东人,博士生,主要从事工程结构抗震研究 (E-mail: shen_tju@163.com)

    通讯作者:

    陈 隽(1972−),男,河南人,教授,博士,博导,主要从事工程结构防灾、土木工程大数据方面的研究 (E-mail: cejchen@tongji.edu.cn)

  • 中图分类号: TU375.4

STUDY ON ANALYTICAL MODEL AND ROBUSTNESS RANKING INDEX OF RC FRAMES WITH UNEQUAL SPANS AGAINST PROGRESSIVE COLLAPSE

  • 摘要: 现有钢筋混凝土(RC)框架抗连续倒塌的理论分析模型仅适用于等跨结构。通过理论推导将现有等跨结构的分析模型推广至不等跨结构,并提出了一个新的修正三折线模型,可以考虑不同工况下结构的抗弯、压拱、悬梁线和拉膜效应机制。利用所提理论分析模型建立了一个鲁棒性评判指标,用于危险工况的快速判断。数值与理论结果对比表明:所提出的修正三折线理论分析模型准确性高,能够为不等跨RC框架抗连续倒塌设计提供参考;所建立的鲁棒性评判指标可用于快速确定出RC框架的最危险柱子失效工况。
  • 图  1  结构抗连续倒塌承载力理论分析模型

    Figure  1.  Analytical models of progressive collapse resistance of structure

    图  2  RC框架结构的6种典型失效工况

    Figure  2.  Six typical column removal scenarios of RC frame structure

    图  3  不等跨结构的假定板屈服线和梁塑性铰分布

    Figure  3.  Assumed plastic hinges and yield-line patterns of structure with unequal spans

    图  4  板拉伸薄膜和梁悬链线效应

    Figure  4.  Tensile membrane and catenary action

    图  5  梁压拱机制下的受力模型[15]

    Figure  5.  Force model of beam specimen

    图  6  不等跨RC框架几何特性 /m

    Figure  6.  Detailing of RC frame with unequal spans

    图  7  单元类型 /mm

    Figure  7.  Details of elements

    图  8  不同失效工况下的结构竖向位移时程响应

    Figure  8.  Time history of vertical displacement of different column loss

    图  9  不同失效工况下的结构荷载因子曲线

    Figure  9.  Load factor from different scenarios

    图  10  1层和7层柱失效下的荷载因子对比

    Figure  10.  Comprisions of load factor of 1st and 7th story column loss

    图  11  不同工况下的结构竖向位移云图

    Figure  11.  Vertical displacement contours of structure under different scenarios

    图  12  结构荷载因子曲线数值的与理论结果对比

    Figure  12.  Comparisons of analytical and numerical load factors

    图  13  结构鲁棒性快速评判指标验证

    Figure  13.  Load factor against the robustness index Π

    表  1  结构最大荷载因子的理论与数值结果对比

    Table  1.   Comparisons of analytical and numerical maximum load factor

    工况数值模型1相对误差R/(%)模型2相对误差R/(%)模型3相对误差R/(%)
    A1 1.90 1.41 25.9 1.56 18.0 1.56 18.0
    A2 1.89 1.44 23.9 1.77 6.4 1.90 −0.3
    A3 2.07 1.51 27.3 1.84 11.3 1.96 5.2
    A4 2.79 1.91 31.4 2.30 17.6 2.47 11.4
    A5 2.23 1.49 33.1 1.82 18.2 1.95 12.4
    A6 1.53 1.18 22.9 1.44 5.9 1.53 −0.5
    B1 4.05 2.58 36.2 3.05 24.7 3.32 18.0
    B2 3.52 1.99 43.4 3.00 14.8 3.20 9.0
    B3 3.57 2.14 40.1 3.15 12.0 3.35 6.3
    B4 4.19 2.34 44.3 3.46 17.4 3.68 12.1
    B5 3.45 1.91 44.6 2.89 16.2 3.05 11.4
    B6 2.91 1.66 43.1 2.56 12.0 2.72 6.5
    下载: 导出CSV

    表  2  结构鲁棒性评判指标的参数表达式

    Table  2.   Expression of parameters for structural robustness evaluation index

    工况ABU
    CC$ \dfrac{{3( {{\chi _y}/{\chi _x} + {\chi _x}/{\chi _y}} ) + 2.5( {1/{\chi _x} + 1/{\chi _y}} )}}{{8{\chi _x}{\chi _y} + 2{\gamma _{\rm{S}}}( {{\chi _x} + {\chi _y}} )}} $$\dfrac{ { { {\chi _y}/{\chi _x} + {\chi _x}/{\chi _y} } } }{ {3.6[ { {\chi _x}{\chi _y}{\rm{ + } }{\gamma _{\rm{S} } }( { {\chi _x} + {\chi _y} } )/6} ]} }$0.02L
    SC$ \dfrac{{( {8{\chi _y}/{\chi _x} + 2{\chi _x}/{\chi _y}} ) + ( {23/{\chi _x} + 2.5{\alpha _x}/{\chi _y}} )}}{{8{\chi _x}{\chi _y} + 2{\gamma _{\rm{S}}}( {{\chi _x} + {\alpha _x}{\chi _y}} )}} $$\dfrac{ {8( { {\chi _y}/{\chi _x} } ) + 5/{\chi _x} } }{ {3.6[ { {\chi _x}{\chi _y}{\rm{ + } }{\gamma _{\rm{S} } }( { {\chi _x} + {\chi _y} } )/6} ]} }$0.03L
    PEC$ \dfrac{{( {6{\chi _y}/{\chi _x} + 2{\chi _x}/{\chi _y}} ) + ( {23/{\chi _x} + 2.5{\alpha _x}/{\chi _y}} )}}{{8{\chi _x}{\chi _y} + 2{\gamma _{\rm{S}}}( {{\chi _x} + {\alpha _x}{\chi _y}} )}} $
    IC$ \dfrac{{8( {{\chi _y}/{\chi _x} + {\chi _x}/{\chi _y}} ) + 23( {{\alpha _y}/{\chi _x} + {\alpha _x}/{\chi _y}} )}}{{8{\chi _x}{\chi _y} + 2{\gamma _{\rm{S}}}( {{\alpha _y}{\chi _x} + {\alpha _x}{\chi _y}} )}} $$\dfrac{ {8( { {\chi _y}/{\chi _x} + {\chi _x}/{\chi _y} } ) + 5( { {\alpha _y}/{\chi _x} + {\alpha _x}/{\chi _y} } )} }{ {3.6[ { {\chi _x}{\chi _y}{\rm{ + } }{\gamma _{\rm{S} } }( { {\chi _x} + {\chi _y} } )/6} ]} }$0.05L
    PSC$ \dfrac{{6{\chi _y}/{\chi _x} + 8{\chi _x}/{\chi _y} + 23( {{\alpha _y}/{\chi _x} + {\alpha _x}/{\chi _y}} )}}{{8{\chi _x}{\chi _y} + 2{\gamma _{\rm{S}}}( {{\alpha _y}{\chi _x} + {\alpha _x}{\chi _y}} )}} $
    PIC$ \dfrac{{6( {{\chi _y}/{\chi _x} + {\chi _x}/{\chi _y}} ) + 23( {{\alpha _y}/{\chi _x} + {\alpha _x}/{\chi _y}} )}}{{8{\chi _x}{\chi _y} + 2{\gamma _{\rm{S}}}( {{\alpha _y}{\chi _x} + {\alpha _x}{\chi _y}} )}} $
    下载: 导出CSV

    表  3  参数$ \gamma $Rhs1$ \lambda $的敏感性分析

    Table  3.   Sensitivity analysis against $ \gamma $R, hs1 and $ \lambda $

    参数取值$ \rho $
    建议值 0.990
    $ \gamma $R 10.00 0.977
    25.00 0.988
    hs1 0.10 0.976
    0.18 0.994
    $ \lambda $ 3.00 0.982
    5.00 0.993
    下载: 导出CSV

      符号表

    .   List of symbols

    符号含义符号含义
    Ab, As梁截面和板单位宽度截面的受拉钢筋面积P, P'结构抗力和外荷载
    $f_{\rm{c}}' $混凝土抗压强度qs, qb板和梁的设计荷载
    fy钢筋屈服强度Tx, Ty沿x向和y向板单位宽度的轴拉力
    Fx, Fy沿x向和y向梁的轴拉力u1屈服点位移
    hb0, hs0梁和板截面有效高度u2过渡段位移
    hb1, hs1梁和板截面受拉钢筋合力点到受压区混凝土中心的高度u3失效位移
    K结构抗力刚度$W_{ {{\rm e}x} }^{\rm{n} }$结构设计荷载所做外力虚功
    KL结构荷载因子刚度$ {W_{{\rm{in}}}} $结构内力虚功
    L等效最短梁跨长αx, αy沿x轴和y轴的短跨与中心跨之间的比值
    Lx, Ly沿x向和y向梁的总跨长χx, χy沿x轴和y轴的梁总跨长与标准跨长L0的比值
    LF1, $ {LF_1'} $修正前和修正后屈服点对应的荷载因子γR, γS描述梁板的抗弯强度比和荷载比的参数
    LFD结构动荷载因子$ \kappa $梁屈服承载力修正因子
    Mb梁的极限抵抗弯矩λ描述梁板截面高度比的参数
    ms板的单位宽度极限抵抗弯矩$ \prod $鲁棒性快速评判指标
    下载: 导出CSV
  • [1] UFC 4-023-03, Design of buildings to resist progressive collapse [S]. Washington, DC: US Department of Defense, 2016.
    [2] GSA2016, Alternate path analysis and design guidelines for progressive collapse resistance [S]. Washington, DC: US General Services Administration, 2016.
    [3] CECS 392: 2014, 建筑结构抗倒塌设计规范[S]. 北京: 中国计划出版社, 2015.

    CECS 392: 2014, Code for anti-collapse design of building structures [S]. Beijing: China Planning Press, 2015. (in Chinese)
    [4] Yi W J, He Q F, Xiao Y, et al. Experimental study on progressive collapse-resistant behavior of reinforced concrete frame structures [J]. ACI Structural Journal, 2008, 105(4): 433 − 439.
    [5] Yu J, Tan K H. Structural behavior of RC beam-column subassemblages under a middle column removal scenario [J]. Journal of Structural Engineering, 2013, 139(2): 233 − 250. doi: 10.1061/(ASCE)ST.1943-541X.0000658
    [6] 王英, 顾祥林, 林峰. 考虑压拱效应的钢筋混凝土双跨梁竖向承载力分析[J]. 建筑结构学报, 2013, 34(4): 32 − 42.

    Wang Ying, Gu Xianglin, Lin Feng. Vertical bearing capacity of RC two-bay beams considering compressive arch action [J]. Journal of Building Structures, 2013, 34(4): 32 − 42. (in Chinese)
    [7] Lu X, Lin K, Li Y, et al. Experimental investigation of RC beam-slab substructures against progressive collapse subject to an edge-column-removal scenario [J]. Engineering Structures, 2017, 149: 91 − 103. doi: 10.1016/j.engstruct.2016.07.039
    [8] 凯钱, 李治, 翁运昊, 等. 钢筋混凝土梁-板子结构抗连续性倒塌性能研究[J]. 工程力学, 2019, 36(6): 239 − 247. doi: 10.6052/j.issn.1000-4750.2018.05.0297

    Qian Kai, Li Zhi, Weng Yunhao, et al. Behavior of RC beam-slab substructures to resist progressive collapse [J]. Engineering Mechanics, 2019, 36(6): 239 − 247. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.05.0297
    [9] 肖宇哲, 李易, 陆新征, 等. 混凝土梁柱子结构连续倒塌动力效应的试验研究[J]. 工程力学, 2019, 36(5): 44 − 52. doi: 10.6052/j.issn.1000-4750.2018.04.0189

    Xiao Yuzhe, Li Yi, Lu Xinzheng, et al. Experimental study on the dynamic effects in progressive collapse of beam-column concrete substructures [J]. Engineering Mechanics, 2019, 36(5): 44 − 52. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.04.0189
    [10] Bao Y, Kunnath S K, El-Tawil S. Macromodel-based simulation of progressive collapse_ RC frame structures. [J]. Journal of Structural Engineering, 2008, 134(7): 1079 − 1091. doi: 10.1061/(ASCE)0733-9445(2008)134:7(1079)
    [11] Feng D, Kolay C, Ricles J M, et al. Collapse simulation of reinforced concrete frame structures [J]. The Structural Design of Tall and Special Buildings, 2016, 25(12): 578 − 601. doi: 10.1002/tal.1273
    [12] Yu J, Luo L, Li Y. Numerical study of progressive collapse resistance of RC beam-slab substructures under perimeter column removal scenarios [J]. Engineering Structures, 2018, 159: 14 − 27. doi: 10.1016/j.engstruct.2017.12.038
    [13] Qian K, Weng Y H, Fu F, et al. Numerical evaluation of the reliability of using single-story substructures to study progressive collapse behaviour of multi-story RC frames [J]. Journal of Building Engineering, 2021, 33: 101636. doi: 10.1016/j.jobe.2020.101636
    [14] Yu J, Tan K H. Analytical model for the capacity of compressive arch action of reinforced concrete sub-assemblages [J]. Magazine of Concrete Research, 2014, 66(3): 109 − 126. doi: 10.1680/macr.13.00217
    [15] 周育泷, 李易, 陆新征, 等. 钢筋混凝土框架抗连续倒塌的压拱机制分析模型[J]. 工程力学, 2016, 33(4): 34 − 42. doi: 10.6052/j.issn.1000-4750.2015.02.0147

    Zhou Yulong, Li Yi, Lu Xinzheng, et al. An analytical model of compressive arch action of reinforced concrete frames to resist progressive collapse [J]. Engineering Mechanics, 2016, 33(4): 34 − 42. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.02.0147
    [16] Dat P X, Hai T K, Jun Y. A simplified approach to assess progressive collapse resistance of reinforced concrete framed structures [J]. Engineering Structures, 2015, 101: 45 − 57. doi: 10.1016/j.engstruct.2015.06.051
    [17] Zhang J Z, Li G Q, Jiang J. Modeling structural behavior of reinforced concrete beam–slab substructures subject to side-column loss at large deflections [J]. Advances in Structural Engineering, 2017, 21(7): 1051 − 1071.
    [18] Zhang J Z, Li G Q, Jiang J. Collapse resistance of RC beam–slab subassemblies due to column loss at large deflections [J]. Magazine of Concrete Research, 2019, 71(12): 647 − 663. doi: 10.1680/jmacr.17.00399
    [19] Zhang Q, Zhao Y G, Kolozvari K, et al. Simplified model for assessing progressive collapse resistance of reinforced concrete frames under an interior column loss [J]. Engineering Structures, 2020, 215: 110688. doi: 10.1016/j.engstruct.2020.110688
    [20] Du K, Bai J, Teng N, et al. Progressive-collapse test of slab effects on reinforced concrete spatial frame substructures [J]. Magazine of Concrete Research, 2021: 1 − 19.
    [21] Zhong W H, Tan Z, Tian L M, et al. Collapse resistance of composite beam-column assemblies with unequal spans under an internal column-removal scenario [J]. Engineering Structures, 2020, 206: 110143. doi: 10.1016/j.engstruct.2019.110143
    [22] He X H C, Yuan X X, Yi W J. Irregularity index for quick identification of worst column removal scenarios of RC frame structures [J]. Engineering Structures, 2019, 178: 191 − 205. doi: 10.1016/j.engstruct.2018.10.026
    [23] Izzuddin B A, Vlassis A G, Elghazouli A Y, et al. Progressive collapse of multi-storey buildings due to sudden column loss — Part I: Simplified assessment framework [J]. Engineering Structures, 2008, 30(5): 1308 − 1318. doi: 10.1016/j.engstruct.2007.07.011
    [24] Pham X D, Tan K H. Experimental study of beam–slab substructures subjected to a penultimate-internal column loss [J]. Engineering Structures, 2013, 55: 2 − 15. doi: 10.1016/j.engstruct.2013.03.026
    [25] Pham A T, Lim N S, Tan K H. Investigations of tensile membrane action in beam-slab systems under progressive collapse subject to different loading configurations and boundary conditions [J]. Engineering Structures, 2017, 150: 520 − 536. doi: 10.1016/j.engstruct.2017.07.060
    [26] Park R, Gamble W L. Reinforced concrete slabs [M]. 2nd ed. Hoboken, New Jersey: John Wiley & Sons, 2000.
    [27] Yu J, Gan Y P, Wu J, et al. Effect of concrete masonry infill walls on progressive collapse performance of reinforced concrete infilled frames [J]. Engineering Structures, 2019, 191: 179 − 193. doi: 10.1016/j.engstruct.2019.04.048
    [28] Tan Z, Zhong W H, Tian L M, et al. Numerical study on collapse-resistant performance of multi-story composite frames under a column removal scenario [J]. Journal of Building Engineering, 2021, 44: 102957. doi: 10.1016/j.jobe.2021.102957
    [29] Yu J, Gan Y P, Ji J. Behavior and design of reinforced concrete frames retrofitted with steel bracing against progressive collapse [J]. The Structural Design of Tall and Special Buildings, 2020(2): e1771.
    [30] Shen J, Ren X, Chen J. Effects of spatial variability of ground motions on collapse behaviour of buildings [J]. Soil Dynamics and Earthquake Engineering, 2021, 144: 106668. doi: 10.1016/j.soildyn.2021.106668
    [31] 陈泽帆, 林楷奇, 陆新征, 等. RC框架梁柱子结构抗连续倒塌性能不确定性分析[J]. 工程力学, 2021, 38(6): 72 − 80. doi: 10.6052/j.issn.1000-4750.2020.07.0464

    Chen Zefan, Lin Kaiqi, Lu Xinzheng, et al. Uncertainty analysis on progressive collapse resistance of RC beam-column substructures [J]. Engineering Mechanics, 2021, 38(6): 72 − 80. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0464
    [32] GB 50009−2012, 建筑结构荷载规范[S]. 北京: 中国建筑工业出版社, 2012.

    GB 50009−2012, Load code for the design of building structures [S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  211
  • HTML全文浏览量:  58
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-29
  • 修回日期:  2021-08-04
  • 网络出版日期:  2021-09-10
  • 刊出日期:  2022-08-25

目录

    /

    返回文章
    返回