DOUBLE NONLINEAR HYPERELASTIC THEORY AND EXPERIMENTAL RESEARCH ON THE LARGE DEFORMATION OF NATURAL RUBBER BEARING IN COMPRESSION AND SHEAR
-
摘要: 基于非线性固体力学已经形成与材料微观结构紧密结合的发展局面,该文从微观上橡胶的超弹性本构方程出发,推导出单层橡胶内任一点的竖向应力满足调和函数,进一步对竖向应力积分得到单层橡胶的单轴等效弹性模量
${E_{\rm c}}$ 与纯弯等效弯曲刚度${E_{\rm c}}I_{\rm s}$ 。将隔震橡胶支座等效为符合${E_{\rm c}}$ 与${E_{\rm c}}I_{\rm s}$ 的均质体,建立橡胶支座在两种外部荷载同时作用下,能宏观反映剪切变形与弯曲程度的偏微分平衡方程,并得到通用解答,解决了橡胶支座竖向与水平两种荷载耦合作用时大剪切变形的几何非线性问题。在此基础上,开展了足尺隔震橡胶支座压剪实验,依据实验剪切模量$G$ 和水平剪应变$\gamma$ 曲线,得到的支座水平推力${{F_{\rm H}}}$ 和$\gamma $ 的实验曲线与理论曲线几乎完全重叠,即通过将材料非线性引入以上微分平衡方程,实现了超弹性橡胶支座大剪切变形的双非线性问题。通过以上解答,得到了隔震橡胶支座内力分布规律,对判断支座薄弱部位有明确的指导意义。随后,对隔震橡胶支座比较重要的两个特性(剪应变相关性,轴压力相关性)进行了对比分析,结果表明:随着轴力增大,橡胶支座的P-Δ效应并不明显,而橡胶内应力的变化不可忽视,同时,剪应变越大,压力相关性越强。可以采用该文的理论方法,通过传感器监测到支座内部应力反演支座水平推力与位移,从而实现地震作用时隔震建筑的健康监测。Abstract: Based on the fact that the development of nonlinear solid mechanics has been closely integrated with the material microstructure, it derived the vertical stress satisfying the harmonic function at any point from the super-elastic constitutive equation of the rubber; further, the uniaxial equivalent elastic modulus${E_{\rm c}}$ and the pure bending equivalent bending stiffness${E_{\rm c}}I_{\rm s}$ of the single-layer rubber were obtained from the vertical stress integration. The seismic isolation rubber bearing was equivalent to a homogeneous body conforming to${E_{\rm c}}$ and${E_{\rm c}}I_{\rm s}$ , and the partial differential equilibrium equation macroscopically reflecting the degree of shear and bending deformation of the rubber bearing was established in the simultaneous action of two external load, and its general solution was obtained. The difficulties of the geometrical non-uniformity of large shear deformation of rubber support were solved in the vertical and horizontal loads. On this basis, a full-scale seismic isolation test of rubber bearing for compression and shear experiment was carried out. According to the experimental shear modulus$G$ and horizontal shear strain$\gamma$ curves, the experimental curves of the horizontal thrust${{F_{\rm H}}}$ and$\gamma $ of the bearing were obtained. It was almost completely overlapped with the theoretical curve. Therefore by introducing the material nonlinearity into the above differential equilibrium equation, the double nonlinear problem of large shear deformation of the superelastic rubber bearing was solved. Through the above answers, the internal force distribution law of the rubber bearing was obtained, which has a clear guiding significance for judging the weak part of the bearing. Subsequently, the comparative analysis of two more important characteristics (shear strain correlation and axial pressure correlation) of the rubber bearing was carried out, the results showed that as the axial force increased, the P-Δ effect of the rubber bearing was not obvious, but the change of internal stress in the rubber couldn't be ignored, Concurrently, the greater the shear strain was, the stronger the pressure dependence was. The horizontal thrust and displacement of the support can be obtained through the sensor monitoring the internal stress of the support, achieving the health monitoring of the isolated building during the earthquake. -
表 1 橡胶支座尺寸
Table 1. Size of rubber bearing
材料 单层厚度t/
mm层数n/
个总厚度/
mm支座半径R/
mm支座总高h/
mm橡胶 5.81 16 93 250 138 钢板 3.00 15 45 表 2 等截面不同材料属性对比
Table 2. Comparison of different material properties of equal section
材料参数(刚度) 等效均质体 HRB335钢 C40混凝土 G/(N/mm2) 0.89 8.32×104 1.35×104 Ec/(N/mm2) 2.47×103 2.00×105 3.25×104 A(As)/mm2 2.91×105 1.96×105 1.96×105 I(Is)/mm4 4.55×109 3.07×109 3.07×109 EI(EcIs)/(N·mm2) 1.13×1013 6.14×1014 9.97×1013 GAs/hr(GA/h)
/(N/mm)2.79×103 1.18×108 1.92×107 表 3 不同轴力下,支座顶部截面内力与水平位移理论值
Table 3. The theoretical values of the internal force and horizontal displacement of the top section of the support, under different axial forces
竖向轴力P/MPa 顶部$\mu $/mm 支座M/(kN·m) 跨中V/kN 0 372.6 48.3 700.0 2 372.8 121.5 700.4 4 373.2 194.9 701.4 6 373.8 268.5 702.9 8 374.6 342.5 705.0 10 375.6 417.0 707.5 12 376.7 492.1 710.7 14 378.1 568.0 714.4 16 379.7 644.7 718.7 18 381.5 722.5 723.6 20 383.5 801.4 729.1 22 385.8 881.5 735.3 24 388.3 963.2 742.2 表 4 纯剪切内力与位移理论值
Table 4. Theoretical values of internal force and displacement in pure shear
竖向轴力
P/kN水平力
FH/kN顶部水平位移最大值
${\mu _{\max }}$/mm支座弯矩
M/(kN·m)跨中剪力
V/kN$弯曲位移{\mu _{\rm E}}$ $剪力位移{\mu _{\rm G}}$ 0 700 2.553×10−3 372.5 48.3 700.0 -
[1] Anil K Chopra. 结构动力学理论及其在地震工程中的应用[M]. 第四版. 谢礼立, 吕大刚, 等 译. 北京: 高等教育出版社, 2016.Anil K Chopra. Structural dynamics theory and its application in earthquake engineering [M]. 4th ed. Translated by Xie Lili, Lü Dagang, et al. Beijing: Higher Education Press, 2016. (in Chinese) [2] Haringx J A. On highly compressible helical springs and rubber rods and their application for vibration-free mountings [J]. Philips Research Reports 4, 1949: 49 − 80, 206 − 220. [3] Kelly J M. Earthquake-resistant design with rubber [M]. Oxford: The Alden Press, 1993. [4] Chang C H. Modeling of laminated rubber bearings using an analytical stiffness matrix [J]. International Journal Of Solids and Structures, 2002, 39(24): 6055 − 6078. doi: 10.1016/S0020-7683(02)00471-7 [5] Ding L, Zhu H P, Wu L. Analysis of mechanical properties of laminated rubber bearings based on transfer matrix method [J]. Composite Structures, 2017, 159: 390 − 396. doi: 10.1016/j.compstruct.2016.09.074 [6] 周福霖. 工程结构减震控制[M]. 北京: 地震出版社, 1997.Zhou Fulin. Seismic mitigation control of engineering structures [M]. Beijing: Seismological Press, 1997. (in Chinese) [7] 日本建筑学会, 著. 隔震结构设计[M]. 刘文光, 译. 北京: 地震出版社, 2005.The Architectural Society of Japan. Seismic isolation structure design [M]. Translated by Liu Wenguang. Beijing: Earthquake Press, 2005. (in Chinese) [8] Takaoka E. Nonlinear mechanical model for laminated rubber bearings subjected to monotonic loading based on Haringx's theory [J]. Journal of Structural and Construction Engineering, 2014, 79(701): 913 − 921. doi: 10.3130/aijs.79.913 [9] 郑哲敏. 非线性连续介质力学[J]. 中国科学院院刊, 1993(4): 283 − 289.Zheng Zhemin. Nonlinear continuum mechanics [J]. Bulletin of the Chinese Academy of Sciences, 1993(4): 283 − 289. (in Chinese) [10] 黄可智. 非线性连续介质力学[M]. 北京: 清华大学出版社, 1989.Huang Kezhi. Nonlinear continuum mechanics [M]. Beijing: Tsinghua University Press, 1989. (in Chinese) [11] Lindley Peter Brian. Effect of poisson's ratio on compression modulus [J]. Journal of Strain Analysis, 1968, 3(2): 142 − 145. doi: 10.1243/03093247V032142 [12] Lindley Peter Brian. Engineering design with natural rubber [M]. Great Britain: The Malaysian Rubber Producers Research Association, 1978. [13] Gent AN. Elastic stability of rubber compression springs [J]. Mechanical Engineering Science, 1964, 6(318): 415 − 430. [14] 徐芝纶. 弹性力学简明教程[M]. 第三版. 北京: 高等教育出版社, 2002.Xu Zhilun. A concise course of elasticity [M]. 3rd ed. Beijing: Higher Education Press, 2002. (in Chinese) [15] GB 20688.3−2006, 建筑隔震橡胶支座[S]. 北京: 中国标准出版社, 2007.GB 20688.3−2006, Building vibration isolation rubber bearing [S]. Beijing: China Standard Press, 2007. (in Chinese) [16] GB/T 20688.1−2007, 隔震橡胶支座试验方法 [S]. 北京: 中国标准出版社, 2007.GB/T 20688.1−2007, Test method for vibration isolation rubber bearings [S]. Beijing: China Standard Press, 2007. (in Chinese) [17] 朱宏平, 沈文爱, 雷鹰, 等. 结构减隔震控制系统性能监测、评估与提升[J]. 工程力学, 2020, 37(1): 1 − 16. doi: 10.6052/j.issn.1000-4750.2019.05.ST06Zhu Hongping, Shen Wen'ai, Lei Ying, et al. Performance testing, evaluation and improvement of structural seismic isolation control system [J]. Engineering Mechanics, 2020, 37(1): 1 − 16. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.05.ST06 [18] Makoto ohsaki, Tomoshi Miyamura, Masayuki Kohiyama, et al. Finite-element analysis of laminated rubber bearing of building frame under seismic excitation [J]. Earthquake Engineering and Structural Dynamics, 2015, 44: 1881 − 1898. doi: 10.1002/eqe.2570 [19] 朱宏平, 谭平, 叶昆. 极罕遇地震作用下铅芯橡胶隔震支座基础隔震结构抗震性能研究[J]. 建筑结构学报, 2019, 40(10): 122 − 131.Zhu Hongping, Tan Ping, Ye Kun. Investigation of seismic performance of LRB base-isolated structures subjected to extremely rare earthquakes [J]. Journal of Building Structures, 2019, 40(10): 122 − 131. (in Chinese) [20] 袁涌, 魏威, 谭平. 一种基于改进超弹性 Zener 模型的高阻尼橡胶隔震支座速度相关性本构模型[J]. 土木工程学报, 2016, 49(3): 73 − 79.Yuan Yong, Wei Wei, Tan Ping. A rate-dependent constitutive model of high damping rubber bearing based on the improved hyperelastic Zener model [J]. China Civil Engineering Journal, 2016, 49(3): 73 − 79. (in Chinese) [21] 李忠献, 高营, 李宁. 基于RSAPS平台的隔震单元模型[J]. 工程力学, 2016, 33(4): 144 − 149. doi: 10.6052/j.issn.1000-4750.2014.09.0768Li Zhongxian, Gao Ying, Li Ning. RSAPS-based isolation element model [J]. Engineering Mechanics, 2016, 33(4): 144 − 149. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.09.0768 [22] 何文福, 许浩, 魏陆顺, 等. 多级性态隔震体系试验研究和结构动力响应分析[J]. 工程力学, 2018, 35(9): 107 − 116. doi: 10.6052/j.issn.1000-4750.2017.05.0370He Wenfu, Xu Hao, Wei Lushun, el al. Experiment research and dynamic response analysis of high performance multi-level bearing [J]. Engineering Mechanics, 2018, 35(9): 107 − 116. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.05.0370 [23] 朱宏平, 周方圆, 袁涌. 建筑隔震结构研究进展与分析[J]. 工程力学, 2014, 31(3): 1 − 10. doi: 10.6052/j.issn.1000-4750.2013.05.ST05Zhu Hongping, Zhou Fangyuan, Yuan Yong. Development and analysis of the research on base isolated structures [J]. Engineering Mechanics, 2014, 31(3): 1 − 10. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.05.ST05 [24] 彭天波, 李翊鸣, 吴意诚. 叠层天然橡胶支座抗震性能的实时混合试验研究[J]. 工程力学, 2018, 35(增刊): 300 − 306. doi: 10.6052/j.issn.1000-4750.2017.05.S058Peng Tianbo, Li Yiming, Wu Yicheng. Real time hybrid test of seismic performance of laminated nature rubber bearings [J]. Engineering Mechanics, 2018, 35(Suppl): 300 − 306. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.05.S058 -