留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

凸轮式响应放大金属阻尼器单自由度体系地震反应分析

赵子龙 赵桂峰 张晶晶 马玉宏

赵子龙, 赵桂峰, 张晶晶, 马玉宏. 凸轮式响应放大金属阻尼器单自由度体系地震反应分析[J]. 工程力学, 2022, 39(S): 129-137, 143. doi: 10.6052/j.issn.1000-4750.2021.04.S022
引用本文: 赵子龙, 赵桂峰, 张晶晶, 马玉宏. 凸轮式响应放大金属阻尼器单自由度体系地震反应分析[J]. 工程力学, 2022, 39(S): 129-137, 143. doi: 10.6052/j.issn.1000-4750.2021.04.S022
ZHAO Zi-long, ZHAO Gui-feng, ZHANG Jing-jing, MA Yu-hong. SEISMIC RESPONSE OF CAM RESPONSE AMPLIFIER WITH METALLIC DAMPER STRUCTURAL SYSTEM[J]. Engineering Mechanics, 2022, 39(S): 129-137, 143. doi: 10.6052/j.issn.1000-4750.2021.04.S022
Citation: ZHAO Zi-long, ZHAO Gui-feng, ZHANG Jing-jing, MA Yu-hong. SEISMIC RESPONSE OF CAM RESPONSE AMPLIFIER WITH METALLIC DAMPER STRUCTURAL SYSTEM[J]. Engineering Mechanics, 2022, 39(S): 129-137, 143. doi: 10.6052/j.issn.1000-4750.2021.04.S022

凸轮式响应放大金属阻尼器单自由度体系地震反应分析

doi: 10.6052/j.issn.1000-4750.2021.04.S022
基金项目: 国家重点研发计划项目(2019YFE0112500);国家自然科学基金项目(51878196,51678173)
详细信息
    作者简介:

    赵子龙(1996−),男,湖南衡阳人,硕士生,主要从事结构隔震、消能等技术研究(E-mail: 1152702827@qq.com)

    张晶晶(1991−),女,河南安阳人,硕士生,主要从事结构隔震、消能等技术研究(E-mail: 907994568@qq.com)

    马玉宏(1972−),女,黑龙江穆棱人,研究员,博士,主要从事结构隔震、防震减灾等研究(E-mail: 849502749@qq.com)

    通讯作者:

    赵桂峰(1972−),男,吉林集安人,副教授,博士,主要从事结构隔震、防震减灾等研究(E-mail: 1766674920@qq.com)

  • 中图分类号: TU311.3

SEISMIC RESPONSE OF CAM RESPONSE AMPLIFIER WITH METALLIC DAMPER STRUCTURAL SYSTEM

  • 摘要: 提出一种凸轮式响应放大金属阻尼器,介绍其工作机理和恢复力计算公式,对安装该阻尼器的单自由度体系建立了运动方程和能量方程。以达到相同位移控制效果为目标,采用不同吨位的金属阻尼器,分别对无控结构、安装传统金属阻尼器和安装凸轮式响应放大金属阻尼器的单自由度体系进行了多遇、罕遇和极罕遇地震作用下的地震响应对比分析。结果表明:在各级地震作用下,串联小吨位金属阻尼器的凸轮式响应放大金属阻尼器均达到了与安装传统大吨位金属阻尼器相同的位移控制效果和耗能比例,基底剪力控制效果也得到了明显的提升,说明采用小吨位金属阻尼器通过响应放大便可达到直接安装大吨位阻尼器的相同位移控制效果,体现了其优越的经济性;另外,在极罕遇地震作用下,该装置能避免阻尼器发生位移失效的现象,体现了该消能装置在各级地震作用下均能保证结构和阻尼器的安全。
  • 图  1  CRAD-MD构造示意图

    Figure  1.  Schematic structural diagram of CRAD-MD

    图  2  CRAD-MD构造示意图

    Figure  2.  Schematic structural diagram of CRAD-MD

    图  3  双线性恢复力模型

    Figure  3.  Bilinear hysteretic model

    图  4  CRAD恢复力模型

    Figure  4.  Restoring force model of the CRAD

    图  5  CRAD-MD单自由度减震体系的计算模型

    Figure  5.  Calculation model of CRAD-MD single-degree-of-freedom damping system

    图  6  Imperial Valley波作用下的位移时程

    Figure  6.  Time history curves under the Imperial Valley wave

    图  7  Imperial Valley-06波作用下滞回曲线对比

    Figure  7.  Comparison of hysteresis curves under the Imperial Valley-06 wave

    图  8  Taft波作用下滞回曲线对比

    Figure  8.  Comparison of hysteresis curves under the Taft wave

    图  9  Northridge-01波作用下滞回曲线对比

    Figure  9.  Comparison of hysteresis curves under the Northridge-01wave

    图  10  Imperial Valley-06波作用下SDOF体系能量时程曲线

    Figure  10.  Energy time history curves under the Imperial Valley-06 wave

    图  11  Northridge-01波作用下SDOF体系能量时程曲线

    Figure  11.  Energy time history curves under the Northridge-01 wave

    图  12  Taft波作用下SDOF体系能量时程曲线

    Figure  12.  Energy time history curves under the Taft wave

    表  1  地震波信息

    Table  1.   Detailed information of the seismic waves

    序号事件名称年份/年台站名称震级震中距/km震源距/kmVs30/(m/s)PGA/
    g
    1Imperial Valley-061979Bonds Corner6.530.442.66223.030.599
    2Taft1952Kern County7.3638.4238.89385.430.456
    3Northridge-011994Duarte-Mel Canyon Rd.6.7048.3748.63459.140.080
    下载: 导出CSV

    表  2  单自由度结构模型简化参数

    Table  2.   Simplified parameters of SDOF

    初始刚度K/(N/m)结构质量
    m/kg
    刚度比
    ɑ
    屈服力
    F/N
    阻尼比 ξ/(%)
    6×1052×1040.011.2×1042
    下载: 导出CSV

    表  3  金属阻尼器参数

    Table  3.   Parameters of metallic damper

    阻尼器序号 刚度
    K/(N/m)
    屈服位移x/m屈服力F/N
    MD1.2×1060.0056000
    C-MD12.4×1050.0051200
    C-MD21.2×1050.005600
    下载: 导出CSV

    表  4  CRAD装置详细参数

    Table  4.   Parameters of CRAD

    阻尼器序号偏心圆盘
    半径r/m
    偏心圆盘
    偏心距e/m
    丝杠螺距
    Ld/m
    摩擦系数
    u
    力的放大
    倍数
    CRAD10.080.0200.040.15.15
    CRAD20.100.0350.040.29.77
    下载: 导出CSV

    表  5  多遇地震作用下SDOF的最大位移和最大剪力

    Table  5.   Maximum displacement and velocity of SDOF under frequent earthquakes

    地震波最大位移/m最大剪力/kN
    SDOFMDCRAD-MD1CRAD-MD2SDOFMDCRAD-MD1CRAD-MD2
    Imperial Valley-06 0.026 0.012 (53.85%) 0.010 (61.54%) 0.010 (61.54%) 22.6 25.4 (−12.39%) 21.5 (4.87%) 19.1 (15.48%)
    Taft 0.026 0.012 (53.85%) 0.014 (46.15%) 0.012 (53.85%) 23.6 23.8 (−0.85%) 17.6 (25.42%) 18.0 (23.73%)
    Northridge 0.030 0.021 (30.00%) 0.020 (33.33%) 0.018 (40.00%) 21.2 23.1 (−8.96%) 19.0 (10.38%) 16.5 (22.17%)
    注:括号内的百分比为减震率,定义为:$\mathrm{减}\mathrm{震}\mathrm{率}=\left|\dfrac{\mathrm{减}\mathrm{震}\mathrm{体}\mathrm{系}\mathrm{反}\mathrm{应}-\mathrm{无}\mathrm{控}\mathrm{体}\mathrm{系}\mathrm{反}\mathrm{应} }{\mathrm{无}\mathrm{控}\mathrm{体}\mathrm{系}\mathrm{反}\mathrm{应} }\right|\times 100\text{%}$
    下载: 导出CSV

    表  6  罕遇地震作用下SDOF的最大位移和最大剪力

    Table  6.   Maximum displacement and velocity of SDOF under rare earthquake

    地震波最大位移/m最大剪力/kN
    SDOFMDCRAD-MD1CRAD-MD2SDOFMDCRAD-MD1CRAD-MD2
    Imperial Valley-06 0.141 0.081 (42.55%) 0.065 (53.90%) 0.067 (52.48%) 87.3 96.9 (−11.00%) 85.4 (2.18%) 0.067 (52.48%)
    Taft 0.163 0.125 (23.31%) 0.114 (30.06%) 0.126 (22.70%) 90.8 92.9 (−2.31%) 85.9 (5.40%) 0.126 (22.70%)
    Northridge 0.184 0.127 (30.98%) 0.140 (23.91%) 0.122 (33.70%) 85.3 87.5 (−2.58%) 80.5 (5.62%) 0.122 (33.70%)
    下载: 导出CSV

    表  7  极罕遇地震作用下SDOF的最大位移和最大剪力

    Table  7.   Maximum displacement and velocity of SDOF under extremely rare earthquakes

    地震波最大位移/m最大剪力/kN
    SDOFMDCRAD-MD1CRAD-MD2SDOFMDCRAD-MD1CRAD-MD2
    Imperial Valley-06 0.256 0.196 (23.44%) 0.208 (18.75%) 0.198 (22.66%) 125.4 127.8 (−1.91%) 121.8 (2.87%) 0.198 (22.66%)
    Taft 0.184 0.167 (9.24%) 0.162 (11.96%) 0.157 (14.67%) 131.0 135.1 (−3.13%) 124.3 (5.11%) 0.157 (14.67%)
    Northridge 0.275 0.229 (16.73%) 0.217 (21.09%) 0.232 (15.63%) 124.6 127.8 (−2.73%) 122.0 (3.69%) 0.232 (15.63%)
    下载: 导出CSV
  • [1] Constantinou M C, Tsopelas P, Hammel W. Testing and modeling of an improved damper configuration for stiff structural systems [R]. New York: The Center for Industrial Effectiveness and Taylor Devices, Inc, 1997.
    [2] Taylor D P. Toggle brace dampers: a new concept for structural control [C]// Advanced Technology in Structural Engineering: Proceedings of 2000 Structures Congress and Exposition (CD-ROM). Reston, VA, ASCE, 2000: 1 − 8.
    [3] Sigaher A N, Constantinou M C. Scissor-jack-damper energy dissipation system [J]. Earthquake Spectra, 2003, 19(1): 133 − 158. doi: 10.1193/1.1540999
    [4] Hwang J S, Kim J, Kim Y M. Rotational inertia dampers with toggle bracing for vibration control of a building structure [J]. Engineering Structures, 2007, 29(1): 1201 − 1208.
    [5] Kubota M, Ishimaru S, Niiya T, et al. Dynamic response-controlled structures with lever mechanisms [J]. Proceedings of the SPIE, 1998, 3325: 35 − 44.
    [6] Baquero Mosquera J S, Luis Almazan J, Tapia N. Amplification system for concentrated and distributed energy dissipation devices [J]. Earthquake Engineering & Structural Dynamics, 2016, 45(6): 935 − 956.
    [7] 刘文光, 董秀玲, 何文福, 等. 位移放大型阻尼墙减震结构的模型试验与数值分析[J]. 振动工程学报, 2015, 28(4): 601 − 609.

    Liu Wenguang Dong Xiuling, He Wenfu, et al. Dynamic tests and numerical response analysis of new energy dissipated structures with displacement [J]. Journal of Vibration Engineering, 2015, 28(4): 601 − 609. (in Chinese)
    [8] 吴福健, 刘文光, 郭彦, 等. 位移放大型粘弹性阻尼器减震结构地震响应分析方法研究[J]. 工程抗震与加固改造, 2017, 39(6): 62 − 67.

    Wu Fujian, liu Wenguang, Guo Yan, et al. Research on seismic response analysis method of viscoelastic damping structures with displacement amplification device [J]. Earthquake Resistant Engineering and Retrofitting, 2017, 39(6): 62 − 67. (in Chinese)
    [9] Berton S, Bolander J E. Amplification system for supplemental damping devices in seismic applications [J]. Journal of Structural Engineering, 2005, 131(6): 979 − 983. doi: 10.1061/(ASCE)0733-9445(2005)131:6(979)
    [10] Mirza Hessabi R, Mercan O. Investigations of the application of gyro-mass dampers with various types of supplemental dampers for vibration control of building structures [J]. Engineering Structures, 2016, 126: 174 − 186. doi: 10.1016/j.engstruct.2016.07.045
    [11] 韩建平, 靳旭. 具位移放大机制的流体粘滞阻尼器性能及减震效果分析[J]. 地震工程与工程振动, 2016, 2(1): 85 − 92.

    Han Jianping Jin Xu. Investigation on performance and seismic mitigation effect of fluid viscous damper with displacement amplification mechanism [J]. Earthquake Engineering and Engineering Vibration, 2016, 2(1): 85 − 92. (in Chinese)
    [12] Jae-Do Kang, Hiroshi Tagawa. Seismic performance of steel structures with seesaw energy dissipation system using fluid viscous dampers [J]. Engineering Structures, 2013, 56(1): 431 − 442.
    [13] Gluck J, Ribakov Y. Semi-active friction system with amplifying braces for control of MDOF structures [J]. The Structural Design of Tall Buildings, 2001, 10(2): 107 − 120. doi: 10.1002/tal.168
    [14] 李毅. 粘滞阻尼器不同连接方式减震性能及其设计方法的研究[D]. 北京: 北京工业大学, 2009.

    Li Yi. Study on damping performance and design method of viscous dampers with different connection modes [D]. Beijing: Beijing University of Technology, 2009. (in Chinese)
    [15] 李宏男, 李元龙, 黄宙, 等. 新型旋转放大式黏弹性阻尼器性能试验研究[J]. 工程力学, 2021, 38(2): 134 − 145. doi: 10.6052/j.issn.1000-4750.2020.04.0213

    Li Hongnan, Li Yuanlong Huang Zhou, et al. Experimental study on the properties of a new rotation magnified viscoelastic damper [J]. Engineering Mechanics, 2021, 38(2): 134 − 145. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0213
    [16] 黄宙, 李宏男, 付兴. 自复位放大位移型SMA阻尼器优化设计方法研究[J]. 工程力学, 2019, 36(6): 202 − 210. doi: 10.6052/j.issn.1000-4750.2018.05.0287

    Huang Zhou, Li Hongnan, Fu Xing. Optimum design of a re-centering deformation-amplified SMA damper [J]. Engineering Mechanics, 2019, 36(6): 202 − 210. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.05.0287
    [17] 禹奇才, 刘春晖, 刘爱荣. 一种放大位移型SMA阻尼器的减震控制分析[J]. 地震工程与工程振动, 2008, 28(5): 151 − 156.

    Yu Qicai, Liu Chunhui, Liu Airong, et al. The analysis of structure vibration control by using shape memory alloy dampers with magnifying story drift [J]. Earthquake Engineering and Engineering Vibration, 2008, 28(5): 151 − 156. (in Chinese)
    [18] 赵桂峰, 马玉宏, 付康, 等. 新型阻尼器凸轮式响应放大装置的作用机理与恢复力模型[J]. 土木工程学报, 2019, 52(10): 20 − 29.

    Zhao Guifeng, Ma Yuhong, Fu Kang, et al. Action mechanism and restoring force model of a new cam-type response amplification device of damper [J]. China Civil Engineering Journal, 2019, 52(10): 20 − 29. (in Chinese)
    [19] 陈嘉佳, 赵桂峰, 马玉宏, 黄浩贤. 装配式RC框架黏滞阻尼器凸轮式响应放大消能体系的地震易损性分析[J]. 土木工程学报, 2020, 53(增刊 2): 109 − 116.

    Chen Jiajia, Zhao Guifeng, Ma Yuhong, et al. Seismic fragility analysis of the assembled energy-dissipated RC frame with viscous damper cam-type response amplification device [J]. China Civil Engineering Journal, 2020, 53(Suppl 2): 109 − 116. (in Chinese)
    [20] 赵桂峰, 马玉宏. 阻尼器响应放大技术研究与应用进展[J]. 土木工程学报, 2020, 53(6): 64 − 78.

    Zhao Guifeng, Ma Yuhong. Research and application progress of damper response amplification technology [J]. China Civil Engineering Journal, 2020, 53(6): 64 − 78. (in Chinese)
  • 加载中
图(12) / 表(7)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  22
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-07
  • 修回日期:  2022-02-23
  • 网络出版日期:  2022-03-25
  • 刊出日期:  2022-06-06

目录

    /

    返回文章
    返回