SEISMIC RESPONSE OF CAM RESPONSE AMPLIFIER WITH METALLIC DAMPER STRUCTURAL SYSTEM
-
摘要: 提出一种凸轮式响应放大金属阻尼器,介绍其工作机理和恢复力计算公式,对安装该阻尼器的单自由度体系建立了运动方程和能量方程。以达到相同位移控制效果为目标,采用不同吨位的金属阻尼器,分别对无控结构、安装传统金属阻尼器和安装凸轮式响应放大金属阻尼器的单自由度体系进行了多遇、罕遇和极罕遇地震作用下的地震响应对比分析。结果表明:在各级地震作用下,串联小吨位金属阻尼器的凸轮式响应放大金属阻尼器均达到了与安装传统大吨位金属阻尼器相同的位移控制效果和耗能比例,基底剪力控制效果也得到了明显的提升,说明采用小吨位金属阻尼器通过响应放大便可达到直接安装大吨位阻尼器的相同位移控制效果,体现了其优越的经济性;另外,在极罕遇地震作用下,该装置能避免阻尼器发生位移失效的现象,体现了该消能装置在各级地震作用下均能保证结构和阻尼器的安全。Abstract: A new type of CAM response amplifier with metal damper is proposed, and its working mechanism and restoring force calculation formula is introduced. Furthermore, the motion equation and energy equation are established for the single-degree-of-freedom system of CAM response amplifier with metallic damper. Based on the same control effect, the seismic responses of the single-degree-of-freedom systems with larger damping metal dampers and with the cam-type response amplification device of smaller damping metal dampers were analyzed and compared respectively. By using metallic damper and CARD with different design parameters, the control effect was compared and analyzed based on the same displacement under all levels of earthquakes. The results show that all the combined cam-type response amplifying metal dampers can achieve the same displacement control effect and energy dissipation ratio as the traditional metal dampers, and the shear stress control effect is also significantly improved under all levels of earthquakes. The results show that the smaller damping metal damper can achieve the same displacement control effect of the larger damping damper directly by response amplification, which is more economic. In addition, the device can avoid displacement failure of the damper under extremely rare earthquakes, so that the safety of the structure and damper is ensured under earthquakes at all levels.
-
表 1 地震波信息
Table 1. Detailed information of the seismic waves
序号 事件名称 年份/年 台站名称 震级 震中距/km 震源距/km Vs30/(m/s) PGA/
g1 Imperial Valley-06 1979 Bonds Corner 6.53 0.44 2.66 223.03 0.599 2 Taft 1952 Kern County 7.36 38.42 38.89 385.43 0.456 3 Northridge-01 1994 Duarte-Mel Canyon Rd. 6.70 48.37 48.63 459.14 0.080 表 2 单自由度结构模型简化参数
Table 2. Simplified parameters of SDOF
初始刚度K/(N/m) 结构质量
m/kg刚度比
ɑ屈服力
F/N阻尼比 ξ/(%) 6×105 2×104 0.01 1.2×104 2 表 3 金属阻尼器参数
Table 3. Parameters of metallic damper
阻尼器序号 刚度
K/(N/m)屈服位移x/m 屈服力F/N MD 1.2×106 0.005 6000 C-MD1 2.4×105 0.005 1200 C-MD2 1.2×105 0.005 600 表 4 CRAD装置详细参数
Table 4. Parameters of CRAD
阻尼器序号 偏心圆盘
半径r/m偏心圆盘
偏心距e/m丝杠螺距
Ld/m摩擦系数
u力的放大
倍数CRAD1 0.08 0.020 0.04 0.1 5.15 CRAD2 0.10 0.035 0.04 0.2 9.77 表 5 多遇地震作用下SDOF的最大位移和最大剪力
Table 5. Maximum displacement and velocity of SDOF under frequent earthquakes
地震波 最大位移/m 最大剪力/kN SDOF MD CRAD-MD1 CRAD-MD2 SDOF MD CRAD-MD1 CRAD-MD2 Imperial Valley-06 0.026 0.012 (53.85%) 0.010 (61.54%) 0.010 (61.54%) 22.6 25.4 (−12.39%) 21.5 (4.87%) 19.1 (15.48%) Taft 0.026 0.012 (53.85%) 0.014 (46.15%) 0.012 (53.85%) 23.6 23.8 (−0.85%) 17.6 (25.42%) 18.0 (23.73%) Northridge 0.030 0.021 (30.00%) 0.020 (33.33%) 0.018 (40.00%) 21.2 23.1 (−8.96%) 19.0 (10.38%) 16.5 (22.17%) 注:括号内的百分比为减震率,定义为:$\mathrm{减}\mathrm{震}\mathrm{率}=\left|\dfrac{\mathrm{减}\mathrm{震}\mathrm{体}\mathrm{系}\mathrm{反}\mathrm{应}-\mathrm{无}\mathrm{控}\mathrm{体}\mathrm{系}\mathrm{反}\mathrm{应} }{\mathrm{无}\mathrm{控}\mathrm{体}\mathrm{系}\mathrm{反}\mathrm{应} }\right|\times 100\text{%}$ 表 6 罕遇地震作用下SDOF的最大位移和最大剪力
Table 6. Maximum displacement and velocity of SDOF under rare earthquake
地震波 最大位移/m 最大剪力/kN SDOF MD CRAD-MD1 CRAD-MD2 SDOF MD CRAD-MD1 CRAD-MD2 Imperial Valley-06 0.141 0.081 (42.55%) 0.065 (53.90%) 0.067 (52.48%) 87.3 96.9 (−11.00%) 85.4 (2.18%) 0.067 (52.48%) Taft 0.163 0.125 (23.31%) 0.114 (30.06%) 0.126 (22.70%) 90.8 92.9 (−2.31%) 85.9 (5.40%) 0.126 (22.70%) Northridge 0.184 0.127 (30.98%) 0.140 (23.91%) 0.122 (33.70%) 85.3 87.5 (−2.58%) 80.5 (5.62%) 0.122 (33.70%) 表 7 极罕遇地震作用下SDOF的最大位移和最大剪力
Table 7. Maximum displacement and velocity of SDOF under extremely rare earthquakes
地震波 最大位移/m 最大剪力/kN SDOF MD CRAD-MD1 CRAD-MD2 SDOF MD CRAD-MD1 CRAD-MD2 Imperial Valley-06 0.256 0.196 (23.44%) 0.208 (18.75%) 0.198 (22.66%) 125.4 127.8 (−1.91%) 121.8 (2.87%) 0.198 (22.66%) Taft 0.184 0.167 (9.24%) 0.162 (11.96%) 0.157 (14.67%) 131.0 135.1 (−3.13%) 124.3 (5.11%) 0.157 (14.67%) Northridge 0.275 0.229 (16.73%) 0.217 (21.09%) 0.232 (15.63%) 124.6 127.8 (−2.73%) 122.0 (3.69%) 0.232 (15.63%) -
[1] Constantinou M C, Tsopelas P, Hammel W. Testing and modeling of an improved damper configuration for stiff structural systems [R]. New York: The Center for Industrial Effectiveness and Taylor Devices, Inc, 1997. [2] Taylor D P. Toggle brace dampers: a new concept for structural control [C]// Advanced Technology in Structural Engineering: Proceedings of 2000 Structures Congress and Exposition (CD-ROM). Reston, VA, ASCE, 2000: 1 − 8. [3] Sigaher A N, Constantinou M C. Scissor-jack-damper energy dissipation system [J]. Earthquake Spectra, 2003, 19(1): 133 − 158. doi: 10.1193/1.1540999 [4] Hwang J S, Kim J, Kim Y M. Rotational inertia dampers with toggle bracing for vibration control of a building structure [J]. Engineering Structures, 2007, 29(1): 1201 − 1208. [5] Kubota M, Ishimaru S, Niiya T, et al. Dynamic response-controlled structures with lever mechanisms [J]. Proceedings of the SPIE, 1998, 3325: 35 − 44. [6] Baquero Mosquera J S, Luis Almazan J, Tapia N. Amplification system for concentrated and distributed energy dissipation devices [J]. Earthquake Engineering & Structural Dynamics, 2016, 45(6): 935 − 956. [7] 刘文光, 董秀玲, 何文福, 等. 位移放大型阻尼墙减震结构的模型试验与数值分析[J]. 振动工程学报, 2015, 28(4): 601 − 609.Liu Wenguang Dong Xiuling, He Wenfu, et al. Dynamic tests and numerical response analysis of new energy dissipated structures with displacement [J]. Journal of Vibration Engineering, 2015, 28(4): 601 − 609. (in Chinese) [8] 吴福健, 刘文光, 郭彦, 等. 位移放大型粘弹性阻尼器减震结构地震响应分析方法研究[J]. 工程抗震与加固改造, 2017, 39(6): 62 − 67.Wu Fujian, liu Wenguang, Guo Yan, et al. Research on seismic response analysis method of viscoelastic damping structures with displacement amplification device [J]. Earthquake Resistant Engineering and Retrofitting, 2017, 39(6): 62 − 67. (in Chinese) [9] Berton S, Bolander J E. Amplification system for supplemental damping devices in seismic applications [J]. Journal of Structural Engineering, 2005, 131(6): 979 − 983. doi: 10.1061/(ASCE)0733-9445(2005)131:6(979) [10] Mirza Hessabi R, Mercan O. Investigations of the application of gyro-mass dampers with various types of supplemental dampers for vibration control of building structures [J]. Engineering Structures, 2016, 126: 174 − 186. doi: 10.1016/j.engstruct.2016.07.045 [11] 韩建平, 靳旭. 具位移放大机制的流体粘滞阻尼器性能及减震效果分析[J]. 地震工程与工程振动, 2016, 2(1): 85 − 92.Han Jianping Jin Xu. Investigation on performance and seismic mitigation effect of fluid viscous damper with displacement amplification mechanism [J]. Earthquake Engineering and Engineering Vibration, 2016, 2(1): 85 − 92. (in Chinese) [12] Jae-Do Kang, Hiroshi Tagawa. Seismic performance of steel structures with seesaw energy dissipation system using fluid viscous dampers [J]. Engineering Structures, 2013, 56(1): 431 − 442. [13] Gluck J, Ribakov Y. Semi-active friction system with amplifying braces for control of MDOF structures [J]. The Structural Design of Tall Buildings, 2001, 10(2): 107 − 120. doi: 10.1002/tal.168 [14] 李毅. 粘滞阻尼器不同连接方式减震性能及其设计方法的研究[D]. 北京: 北京工业大学, 2009.Li Yi. Study on damping performance and design method of viscous dampers with different connection modes [D]. Beijing: Beijing University of Technology, 2009. (in Chinese) [15] 李宏男, 李元龙, 黄宙, 等. 新型旋转放大式黏弹性阻尼器性能试验研究[J]. 工程力学, 2021, 38(2): 134 − 145. doi: 10.6052/j.issn.1000-4750.2020.04.0213Li Hongnan, Li Yuanlong Huang Zhou, et al. Experimental study on the properties of a new rotation magnified viscoelastic damper [J]. Engineering Mechanics, 2021, 38(2): 134 − 145. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0213 [16] 黄宙, 李宏男, 付兴. 自复位放大位移型SMA阻尼器优化设计方法研究[J]. 工程力学, 2019, 36(6): 202 − 210. doi: 10.6052/j.issn.1000-4750.2018.05.0287Huang Zhou, Li Hongnan, Fu Xing. Optimum design of a re-centering deformation-amplified SMA damper [J]. Engineering Mechanics, 2019, 36(6): 202 − 210. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.05.0287 [17] 禹奇才, 刘春晖, 刘爱荣. 一种放大位移型SMA阻尼器的减震控制分析[J]. 地震工程与工程振动, 2008, 28(5): 151 − 156.Yu Qicai, Liu Chunhui, Liu Airong, et al. The analysis of structure vibration control by using shape memory alloy dampers with magnifying story drift [J]. Earthquake Engineering and Engineering Vibration, 2008, 28(5): 151 − 156. (in Chinese) [18] 赵桂峰, 马玉宏, 付康, 等. 新型阻尼器凸轮式响应放大装置的作用机理与恢复力模型[J]. 土木工程学报, 2019, 52(10): 20 − 29.Zhao Guifeng, Ma Yuhong, Fu Kang, et al. Action mechanism and restoring force model of a new cam-type response amplification device of damper [J]. China Civil Engineering Journal, 2019, 52(10): 20 − 29. (in Chinese) [19] 陈嘉佳, 赵桂峰, 马玉宏, 黄浩贤. 装配式RC框架黏滞阻尼器凸轮式响应放大消能体系的地震易损性分析[J]. 土木工程学报, 2020, 53(增刊 2): 109 − 116.Chen Jiajia, Zhao Guifeng, Ma Yuhong, et al. Seismic fragility analysis of the assembled energy-dissipated RC frame with viscous damper cam-type response amplification device [J]. China Civil Engineering Journal, 2020, 53(Suppl 2): 109 − 116. (in Chinese) [20] 赵桂峰, 马玉宏. 阻尼器响应放大技术研究与应用进展[J]. 土木工程学报, 2020, 53(6): 64 − 78.Zhao Guifeng, Ma Yuhong. Research and application progress of damper response amplification technology [J]. China Civil Engineering Journal, 2020, 53(6): 64 − 78. (in Chinese) -