THE SEISMIC PERFORMANCE OF PRECAST CONCRETE FRAME STRUCTURES WITH DRY-CONNECTED ROTATIONAL FRICTION BEAM-COLUMN JOINTS
-
摘要: 该研究提出了一种转动摩擦型干式装配梁-柱节点(rotational friction dissipative joint, RFDJ),具有刚度、屈服弯矩易调控和变形、耗能能力强的特点。为了研究RFDJ对于装配式框架结构抗震性能的影响并验证其可行性,该研究以含RFDJ和灌浆套筒柱脚节点的新型装配式框架结构体系(novel precast concrete frame, NPCF)作为研究对象,基于2个不同楼层数量的传统现浇框架结构(reinforced concrete frame, RCF)分析案例,综合考虑总起滑弯矩比(ρ)和3种起滑弯矩(Ms)分布模式影响,设计了120个NPCF结构分析案例,开展了多遇和罕遇地震作用下的结构非线性时程分析,结果表明:RFDJ具备用于装配式框架结构的可行性,可实现等同或优于RCF的抗震性能;ρ和Ms分布模式是决定NPCF抗震性能的关键设计参数;结构响应随ρ的增加而降低;Ms分布模式对结构的地震响应控制机制具有显著影响,均匀累积分布模式可以最小的ρ值实现最好的层间位移角控制效果,且有利于节点深化设计和施工。该研究成果可为含干式梁-柱节点的装配式框架结构的研发和设计方法的研究提供参考。
-
关键词:
- 干式梁-柱节点 /
- 装配式混凝土框架结构 /
- 转动摩擦耗能 /
- 非线性时程分析 /
- 抗震性能
Abstract: Proposes a dry-connected rotational friction dissipative precast concrete beam-column joint (rotational friction dissipative joint, RFDJ). The joint is featured by the easy-to-adjust stiffness, yield moment, desirable deformation and energy-dissipation capacities. To validate the applicability of RFDJs for precast concrete frame structures, a novel precast concrete frame structure (NPCF) which contains RFDJs and grouted sleeve column base joints is selected as the research object. Based on two conventional reinforced concrete frames (RCFs) with different numbers of stories, the total slip moment ratio (ρ) and slip moment (Ms) distribution pattern are considered to generate 120 NPCF study cases. Based on these, nonlinear time-history analysis is conducted. The analysis results indicate that the RFDJ is applicable for precast concrete frame structures to make the structural performance equal to or better than that of RCFs. The ρ and Ms distribution pattern are two critical design parameters which determine the seismic performance of the NPCF. The structural response decreases with the increase of ρ, and the Ms distribution pattern has a significant influence on the seismic response control mechanism of the structure. The uniform cumulative distribution pattern could most effectively control the inter-story drift ratio with the lowest value of ρ, which is beneficial to the detailing and construction of RFDJs. The research provides a useful reference for related studies on the development and design of precast concrete frame structures with dry-connected beam-column joints. -
表 1 最优案例结构罕遇地震作用下的Rθ, min及对应的ρ
Table 1. Values of Rθ, min and ρ of optimal study cases under MCE
Ms分布模式 NPCF6 NPCF9 ρ Rθ, min/(%) ρ Rθ, min/(%) 均匀分布 22.00 −17.12 23.00 −24.54 均匀累积分布 8.50 −21.04 12.00 −26.31 一阶振型位移角分布 16.00 −17.12 26.00 −24.54 注:ρ为总起滑弯矩比;Rθ,min为NPCF与RCF最大层间位移角的相对差值。 表 2 最优案例结构罕遇地震作用下的DCF
Table 2. DCF of study cases under MCE
Ms分布模式 NPCF6 NPCF9 ρ DCF ρ DCF 均匀分布 22.00 1.35 23.00 1.43 均匀累积分布 8.50 1.24 12.00 1.26 一阶振型位移角分布 16.00 1.35 26.00 1.43 注:ρ为总起滑弯矩比;DCF为层间位移角集中系数。 -
[1] 蒋勤俭. 国内外装配式混凝土建筑发展综述[J]. 建筑技术, 2010, 41(12): 1074 − 1077. doi: 10.3969/j.issn.1000-4726.2010.12.001Jiang Qinjian. Summary on development of assembled concrete building both home and abroad [J]. Architecture Technology, 2010, 41(12): 1074 − 1077. (in Chinese) doi: 10.3969/j.issn.1000-4726.2010.12.001 [2] Chong Xun, Sha Huiling, Xie Linlin, et al. Experimental and numerical studies on the seismic performance of precast concrete shear wall structures with an energy dissipation cladding panel [J]. Journal of Building Engineering, 2020: 1796843. doi: 10.1080/13632469.2020.1796843. [3] 周德恒, 李爱群, 贾洪, 等. 预制钢筋混凝土框架结构抗震性能研究进展(Ⅰ)——节点性能研究[J]. 工业建筑, 2014, 44(6): 95 − 100, 121.Zhou Deheng, Li Aiqun, Jia Hong, et al. Progress of investigation on seismic behavior of precast concrete frame structures (I): study of joint property [J]. Industrial Construction, 2014, 44(6): 95 − 100, 121. (in Chinese) [4] 种迅, 侯林兵, 解琳琳, 等. 含减震外挂墙板的装配式框架结构协同抗震性能研究[J]. 工程力学, 2021, 38(6): 209 − 217. doi: 10.6052/j.issn.1000-4750.2020.07.0471Chong Xun, Hou Linbing, Xie Linlin, et al. Investigation on the collaborative seismic performance of prefabricated frame structures with energy dissipating cladding panels [J]. Engineering Mechanics, 2021, 38(6): 209 − 217. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0471 [5] 吴刚, 冯德成. 装配式混凝土框架节点基本性能研究进展[J]. 建筑结构学报, 2018, 39(2): 1 − 16.Wu Gang, Feng Decheng. Research progress on fundamental performance of precast concrete frame beam-to-column connections [J]. Journal of Building Structures, 2018, 39(2): 1 − 16. (in Chinese) [6] Priestley M J N. Overview of PRESSS research program [J]. PCJ Journal, 1991, 36(4): 50 − 57. [7] Hanaor A, Ben-Arroyo A. Prestressed bolting in precast concrete beam-column connection [J]. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 1998, 128(2): 144 − 153. [8] 郭彤, 宋良龙. 腹板摩擦式自定心预应力混凝土框架梁柱节点的理论分析[J]. 土木工程学报, 2012(7): 73 − 79.Guo Tong, Song Lianglong. Theoretical analysis of beam-column connections of self-centering prestressed concrete frame with web friction device [J]. China Civil Engineering Journal, 2012(7): 73 − 79. (in Chinese) [9] Morgen B G, Kurama Y C. Seismic design of friction-damped precast concrete frame structures [J]. Journal of Structural Engineering, 2007, 133(11): 1501 − 1511. doi: 10.1061/(ASCE)0733-9445(2007)133:11(1501) [10] 吕西林, 范力, 赵斌. 装配式预制混凝土框架结构缩尺模型拟动力试验研究[J]. 建筑结构学报, 2008, 29(4): 58 − 65. doi: 10.3321/j.issn:1000-6869.2008.04.008Lü Xilin, Fan Li, Zhao Bin. Pseudo dynamic test on a reduced scale jointed precast concrete frame structure [J]. Journal of Building Structures, 2008, 29(4): 58 − 65. (in Chinese) doi: 10.3321/j.issn:1000-6869.2008.04.008 [11] Hong Won-Kee. Hybrid composite precast systems: numerical investigation to construction [M]. Duxford: Woodhead Publishing, 2019. [12] 杨小琦, 王燕, 张海宾, 等. 基于转动型摩擦阻尼器滞回性能试验研究[J]. 工业建筑, 2020, 50(5): 151 − 157, 108.Yang Xiaoqi, Wang Yan, Zhang Haibin, et al. Research on hysteretic behavior of rotational friction damper [J]. Industrial Construction, 2020, 50(5): 151 − 157, 108. (in Chinese) [13] 国巍, 徐恒超. 新型旋转摩擦阻尼器性能研究[J]. 结构工程师, 2018, 34(增刊 1): 54 − 58.Guo Wei, Xu Hengchao. Performance of a novel rotational frictional damper [J]. Structural Engineers, 2018, 34(Suppl 1): 54 − 58. (in Chinese) [14] Kim EngChouery, 樊奎, 贾良玖. 对称和非对称型摩擦耗能连接的抗震性能与设计方法研究现状[J]. 工程力学, 2021, 38(5): 22 − 37, 49. doi: 10.6052/j.issn.1000-4750.2020.06.0412Kim EngChouery, Fan Kui, Jia Liangjiu. State-of-the-art review of symmetric and asymmetric friction connections: seismic behavior and design methods [J]. Engineering Mechanics, 2021, 38(5): 22 − 37, 49. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0412 [15] Park R. Evaluation of ductility of structures and structural assemblages from laboratory testing [J]. Bulletin of the New Zealand National Society for Earthquake Engineering, 1989, 22(3): 155 − 166. doi: 10.5459/bnzsee.22.3.155-166 [16] Xie Linlin, Lu Xinzheng, Guan Hong. Experimental study and numerical model calibration for earthquake-induced collapse of RC frames with emphasis on key columns, joints, and the overall structure [J]. Journal of Earthquake Engineering, 2015, 19(8): 1320 − 1344. doi: 10.1080/13632469.2015.1040897 [17] Liu Hongtao, Chen Jinnan, Xu Chengshun, et al. Seismic performance of precast column connected with grouted sleeve connectors [J]. Journal of Building Engineering, 2020, 31: 101410. doi: 10.1016/j.jobe.2020.101410 [18] GB 50011−2010, 建筑抗震设计规范(2016年版)[S]. 北京: 中国建筑工业出版社, 2016.GB 50011−2010, Code for seismic design of buildings (2016 edition) [S]. Beijing: China Building Industry Press, 2016. (in Chinese) [19] Lu Xinzheng, Guan Hong. Earthquake disaster simulation of civil infrastructures: from tall buildings to urban areas [M]. 2nd ed. Beijing: Science Press, 2021. [20] Mazzoni S, McKenna F, Scott M H, et al. Open system for earthquake engineering simulation, user command-language manual: Version 2.2.0 [EB/OL]. http://opensees.berkeley.edu, 2009-1-1. [21] Lu Xiao, Lu Xinzheng, Guan Hong, et al. Collapse simulation of reinforced concrete high-rise building induced by extreme earthquakes [J]. Earthquake Engineering and Structural Dynamics, 2013, 42(5): 705 − 723. doi: 10.1002/eqe.2240 [22] Lu Xinzheng, Xie Linlin, Guan Hong, et al. A shear wall element for nonlinear seismic analysis of super-tall buildings using OpenSees [J]. Finite Elements in Analysis and Design, 2015, 98: 14 − 25. doi: 10.1016/j.finel.2015.01.006 [23] Kent D C, Park R. Flexural members with confined concrete [J]. Journal of the Structural Division, 1971, 97(7): 1969 − 1990. doi: 10.1061/JSDEAG.0002957 [24] Pacific Earthquake Engineering Research Center. PEER ground motion database [EB/OL]. http://ngawest2.berkeley.edu, 2013-1-1. [25] Ji Xiaodong, Kato Mikiko, Wang Tao, et al. Effect of gravity columns on mitigation of drift concentration for braced frames [J]. Journal of constructional steel research, 2009, 65: 2148 − 2156. doi: 10.1016/j.jcsr.2009.07.003 [26] Chong Xun, Hou Linbing, Xie Linlin, et al. Seismic performance of a new energy dissipative cladding panel connection system for application in precast concrete frame structure [J]. Journal of Building Engineering, 2021, 44: 102671. doi: 10.1016/j.jobe.2021.102671 [27] 王啸霆, 陈曦, 王涛, 等. 外套整体式加固砌体结构抗震性能试验研究[J]. 工程力学, 2022, 39(2): 123 − 135. doi: 10.6052/j.issn.1000-4750.2020.12.0931Wang Xiaoting, Chen Xi, Wang Tao, et al. Experimental study of a masonry building retrofitted integrally by pre-fabricated RC panels [J]. Engineering Mechanics, 2022, 39(2): 123 − 135. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.12.0931 [28] 叶列平, 金鑫磊, 田源, 等. 建筑结构抗震体系能力设计法综述[J]. 工程力学, 2022, 39(5): 1 − 12. doi: 10.6052/j.issn.1000-4750.2021.03.0173Ye Lieping, Jin Xinglei, Tian Yuan, et al. System capacity design method for seismic design of building structures: a review [J]. Engineering Mechanics, 2022, 39(5): 1 − 12. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.03.0173 -