留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高韧性水泥基复合材料与活性粉末混凝土界面剪切强度试验研究

李庆华 银星 郭康安 徐世烺

李庆华, 银星, 郭康安, 徐世烺. 超高韧性水泥基复合材料与活性粉末混凝土界面剪切强度试验研究[J]. 工程力学, 2022, 39(8): 232-244. doi: 10.6052/j.issn.1000-4750.2021.05.0355
引用本文: 李庆华, 银星, 郭康安, 徐世烺. 超高韧性水泥基复合材料与活性粉末混凝土界面剪切强度试验研究[J]. 工程力学, 2022, 39(8): 232-244. doi: 10.6052/j.issn.1000-4750.2021.05.0355
LI Qing-hua, YIN Xing, GUO Kang-an, XU Shi-lang. EXPERIMENTAL STUDY ON THE INTERFACIAL SHEAR STRENGTH BETWEEN ULTRA-HIGH TOUGHNESS CEMENTITIOUS COMPOSITES AND REACTIVE POWDER CONCRETE[J]. Engineering Mechanics, 2022, 39(8): 232-244. doi: 10.6052/j.issn.1000-4750.2021.05.0355
Citation: LI Qing-hua, YIN Xing, GUO Kang-an, XU Shi-lang. EXPERIMENTAL STUDY ON THE INTERFACIAL SHEAR STRENGTH BETWEEN ULTRA-HIGH TOUGHNESS CEMENTITIOUS COMPOSITES AND REACTIVE POWDER CONCRETE[J]. Engineering Mechanics, 2022, 39(8): 232-244. doi: 10.6052/j.issn.1000-4750.2021.05.0355

超高韧性水泥基复合材料与活性粉末混凝土界面剪切强度试验研究

doi: 10.6052/j.issn.1000-4750.2021.05.0355
基金项目: 国家自然科学基金项目(51978607)
详细信息
    作者简介:

    李庆华(1981−),女,河北人,教授,博士,博导,主要从事新材料结构研究 (E-mail: liqinghua@zju.edu.cn)

    银 星(1995−),男,内蒙古人,博士生,主要从事高性能混凝土材料与结构冲击动力学研究 (E-mail: yinxing@zju.edu.cn)

    郭康安(1996−),男,山西人,硕士,主要从事纤维混凝土界面剪切性能研究 (E-mail: 21812189@zju.edu.cn)

    通讯作者:

    徐世烺(1953−),男,湖北人,教授,博士,博导,主要从事混凝土断裂力学、新型材料与新型结构研究 (E-mail: slxu@zju.edu.cn)

  • 中图分类号: TU528.572

EXPERIMENTAL STUDY ON THE INTERFACIAL SHEAR STRENGTH BETWEEN ULTRA-HIGH TOUGHNESS CEMENTITIOUS COMPOSITES AND REACTIVE POWDER CONCRETE

  • 摘要: 该研究使用双面剪切试验对500 d长龄期的超高韧性水泥基复合材料(UHTCC)、活性粉末混凝土(RPC)和UHTCC/RPC界面的剪切强度进行了测试,并结合数字图像相关技术对其破坏过程进行了观测。结果表明,UHTCC、RPC和UHTCC/RPC界面均表现出良好的剪切延性,在加载过程中均未发生脆性破坏。此外,改进浇筑工艺和提高粘结界面的粗糙度均能够提高UHTCC/RPC界面剪切强度。将现有的界面剪切强度计算经验公式与试验结果对比发现现有的经验公式无法准确预测UHTCC/RPC的界面剪切强度。该研究建立了UHTCC/RPC界面剪切试验的有限元分析模型,并使用COHESIVE单元模拟界面行为,模拟结果与试验结果吻合较好。
  • 图  1  功能梯度受弯构件的界面处存在剪力

    Figure  1.  Shear force at interface of a functional grade flexural member

    图  2  不同界面剪切强度测试方法示意图[12]

    Figure  2.  Schematics of different shear interfacial test methods[12]

    图  3  基本力学性能试验示意图

    Figure  3.  Schematics of basic mechanical properties tests

    图  4  界面双剪试件尺寸 /mm

    Figure  4.  Dimensions of interface double-shear specimens

    图  5  双剪试验加载装置示意图 /mm

    Figure  5.  Schematic of double-shear test set-up

    图  6  试件UHTCC一侧界面的破坏形态

    Figure  6.  Failure modes of interface of UHTCC side of specimen

    图  7  RPC与UHTCC剪切试验试件的主应变

    Figure  7.  Principal strain of RPC and UHTCC shear test specimens

    图  8  界面剪切试验试件在不同加载阶段的主应变(IST-WH-N)

    Figure  8.  Principal strain of interfacial shear specimens at different loading stages (IST-WH-N)

    图  9  双剪试验的荷载-位移曲线

    Figure  9.  Load-displacement curves of double-shear tests

    图  10  各试验组的平均剪切强度或界面剪切强度

    Figure  10.  Average shear strength or interfacial shear strength of test groups

    图  11  ABAQUS中COHESIVE单元的牵引-分离法则

    Figure  11.  Traction-separation response of COHESIVE element in ABAQUS

    图  12  ABAQUS双剪试验有限元模型

    Figure  12.  FEA model of double-shear test in ABAQUS

    图  13  有限元分析所得的荷载-位移曲线

    Figure  13.  Load-displacement curves obtained by FEA

    表  1  纤维的性能指标

    Table  1.   Properties of fibers

    性能指标PVA纤维钢纤维
    长度/mm1213
    直径/mm0.040.21
    拉伸强度/MPa16202750
    弹性模量/GPa42.8206
    伸长率/(%)7
    质量密度/(kg/m3)13007800
    下载: 导出CSV

    表  2  UHTCC与RPC的基本力学性能汇总

    Table  2.   Summaries of basic mechanical properties of UHTCC and RPC

    性能指标UHTCCRPC
    平均抗拉强度/MPa4.28 ± 0.2210.43 ± 0.58
    平均极限拉伸应变/(%)≈ 3.2≈ 0.3
    平均立方体抗压强度/MPa58.48 ± 3.28146.94 ± 5.47
    平均抗折强度/MPa28.83 ± 0.5851.51 ± 3.12
    下载: 导出CSV

    表  3  试件信息

    Table  3.   Details of specimens

    编号试验内容浇筑方式界面粗糙度
    ST-UHTCC材料剪切强度一次性浇筑
    ST-RPC材料剪切强度一次性浇筑
    IST-WW界面剪切强度先浇筑UHTCC,
    在其初凝前于其上浇筑RPC
    IST-WH-N界面剪切强度在硬化UHTCC上浇筑RPC
    IST-WH-L界面剪切强度在硬化UHTCC上浇筑RPC
    IST-WH-H界面剪切强度在硬化UHTCC上浇筑RPC
    下载: 导出CSV

    表  4  双剪强度

    Table  4.   Double-shear strength

    试验组别双剪强度/MPa平均值/
    MPa
    标准差/
    MPa
    平均值与UHTCC
    剪切强度的比值
    试件1试件2试件3
    ST-UHTCC 6.56 6.23 5.81 6.20 0.31 1.00
    ST-RPC 20.87 19.91 19.88 20.22 0.46 3.26
    IST-WW 3.84 4.53 4.37 4.25 0.29 0.69
    IST-WH-N 1.23 1.20 1.26 1.23 0.02 0.20
    IST-WH-L 1.92 1.83 1.73 1.82 0.08 0.29
    IST-WH-H 3.64 3.26 3.37 3.42 0.16 0.55
    下载: 导出CSV

    表  5  使用经验公式计算界面剪切强度

    Table  5.   Interfacial shear strength calculated by empirical formula

    计算方法界面无粗糙度界面高粗糙度
    计算值/
    MPa
    试验值/
    计算值
    计算值/
    MPa
    试验值/
    计算值
    JTG/T J22−2008[35]0.457.60
    ACI 318-19[36]0.552.240.556.22
    AASHTO LRFD-8[37]0.522.371.662.06
    CAN/CSA-A23.3-04[38]0.254.920.506.84
    Eurocode 2[39]1.500.821.931.77
    fib−2010 [40]0.861.431.712.00
    Patnik[41]0.001.841.86
    Ju等[18]6.290.54
    下载: 导出CSV

    表  6  不同界面特性下c的取值

    Table  6.   Value of c under different interface characteristics

    浇筑方式界面粗糙度c
    先浇筑UHTCC,
    在其初凝前于其上浇筑RPC
    0.59
    在硬化UHTCC上浇筑RPC光滑0.17
    在硬化UHTCC上浇筑RPC低粗糙度 (Rt=1.0 mm)0.25
    在硬化UHTCC上浇筑RPC高粗糙度 (Rt=1.4 mm)0.46
    下载: 导出CSV
  • [1] McVay M K. Spalling damage of concrete structures (Technical report SL-88-22) [R]. Vicksburg: US Army Crops of Engineers, 1988.
    [2] 郑文忠, 吕雪源. 活性粉末混凝土研究进展[J]. 建筑结构学报, 2015, 36(10): 44 − 58.

    Zheng Wenzhong, Lü Xueyuan. Literature review of reactive powder concrete [J]. Journal of Building Structures, 2015, 36(10): 44 − 58. (in Chinese)
    [3] 樊健生, 王哲, 杨松, 等. 超高性能混凝土板冲切与弯曲性能研究[J]. 工程力学, 2021, 38(4): 30 − 43. doi: 10.6052/j.issn.1000-4750.2020.06.0349

    Fan Jiansheng, Wang Zhe, Yang Song, et al. Research on punching shear and bending behavior of ultra-high performance concrete slabs [J]. Engineering Mechanics, 2021, 38(4): 30 − 43. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0349
    [4] Li J, Wu C Q, Hao H, et al. Experimental investigation of ultra-high performance concrete slabs under contact explosions [J]. International Journal of Impact Engineering, 2016, 93: 62 − 75. doi: 10.1016/j.ijimpeng.2016.02.007
    [5] Li V C, Leung C K Y. Steady-state and multiple cracking of short random fiber composites [J]. Journal of Engineering Mechanics-ASCE, 1992, 118(11): 2246 − 2264. doi: 10.1061/(ASCE)0733-9399(1992)118:11(2246)
    [6] Li V C. Engineered Cementitious Composites (ECC) [M]. Berlin: Springer, 2019.
    [7] 徐世烺, 李庆华. 超高韧性水泥基复合材料在高性能建筑结构中的基本应用[M]. 北京: 科学出版社, 2010.

    Xu Shilang, Li Qinghua. Basic application of ultra high toughness cementitious composites in advanced engineering structures [M]. Beijing: Science Press, 2010. (in Chinese)
    [8] 李庆华, 舒程岚青, 徐世烺. 超高韧性水泥基复合材料的层裂试验研究[J]. 工程力学, 2020, 37(4): 51 − 59. doi: 10.6052/j.issn.1000-4750.2019.02.0060

    Li Qinghua, Shu Chenglanqing, Xu Shilang. Experimental study on spall behavior of ultra-high toughness cementitious composites [J]. Engineering Mechanics, 2020, 37(4): 51 − 59. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.02.0060
    [9] 徐世烺, 李锐, 李庆华, 等. 超高韧性水泥基复合材料功能梯度板接触爆炸数值模拟[J]. 工程力学, 2020, 37(8): 123 − 133, 178. doi: 10.6052/j.issn.1000-4750.2019.09.0548

    Xu Shilang, Li Rui, Li Qinghua, et al. Numerical simulation of functionally graded slabs of ultra-high toughness cementitious composites under contact explosion [J]. Engineering Mechanics, 2020, 37(8): 123 − 133, 178. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.09.0548
    [10] 董坤, 郝建文, 李鹏, 等. 环境温差下FRP-混凝土界面粘结行为分析[J]. 工程力学, 2020, 37(11): 117 − 126. doi: 10.6052/j.issn.1000-4750.2019.12.0783

    Dong Kun, Hao Jianwen, Li Peng, et al. Studies on the bond performance of FRP-to-concrete interfaces under environmental temperature difference [J]. Engineering Mechanics, 2020, 37(11): 117 − 126. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0783
    [11] 李锐. 超高韧性水泥基复合材料功能梯度板抗爆炸数值模拟[D]. 杭州: 浙江大学, 2020.

    Li Rui. Numerical simulation of ultra-high toughness cementitious composite functionally graded slabs subjected to blast loading [D]. Hangzhou: Zhejiang University, 2020. (in Chinese)
    [12] Espeche A D, León J. Estimation of bond strength envelopes for old-to-new concrete interfaces based on a cylinder splitting test [J]. Construction and Building Materials, 2011, 25(3): 1222 − 1235. doi: 10.1016/j.conbuildmat.2010.09.032
    [13] 王楠, 徐世烺. 超高韧性水泥基复合材料与既有混凝土黏结性能[J]. 建筑材料学报, 2011, 14(3): 317 − 323. doi: 10.3969/j.issn.1007-9629.2011.03.006

    Wang Nan, Xu Shilang. Bonding performance between ultra high toughness cementitious composites and existing concrete [J]. Journal of Building Materials, 2011, 14(3): 317 − 323. (in Chinese) doi: 10.3969/j.issn.1007-9629.2011.03.006
    [14] Wang B, Li Q, Liu F, et al. Shear bond assessment of UHTCC repair using push-out test [J]. Construction and Building Materials, 2018, 164: 206 − 216. doi: 10.1016/j.conbuildmat.2017.12.148
    [15] Gao S, Zhao X, Qiao J, et al. Study on the bonding properties of Engineered Cementitious Composites (ECC) and existing concrete exposed to high temperature [J]. Construction and Building Materials, 2019, 196: 330 − 344. doi: 10.1016/j.conbuildmat.2018.11.136
    [16] Jang H O, Lee H S, Cho K, et al. Experimental study on shear performance of plain construction joints integrated with ultra-high performance concrete (UHPC) [J]. Construction and Building Materials, 2017, 152: 16 − 23. doi: 10.1016/j.conbuildmat.2017.06.156
    [17] Valikhani A, Jahromi A J, Mantawy I M, et al. Experimental evaluation of concrete-to-UHPC bond strength with correlation to surface roughness for repair application [J]. Construction and Building Materials, 2020, 238: 117753. doi: 10.1016/j.conbuildmat.2019.117753
    [18] Ju Y, Shen T, Wang D. Bonding behavior between reactive powder concrete and normal strength concrete [J]. Construction and Building Materials, 2020, 242: 118024. doi: 10.1016/j.conbuildmat.2020.118024
    [19] Farzad M, Shafieifar M, Azizinamini A. Experimental and numerical study on bond strength between conventional concrete and Ultra High-Performance Concrete (UHPC) [J]. Engineering Structures, 2019, 186: 297 − 305. doi: 10.1016/j.engstruct.2019.02.030
    [20] Xu S, Guo K, Li Q, et al. Shear fracture performance of the interface between ultra-high toughness cementitious composites and reactive powder concrete [J]. Composite Structures, 2021, 275: 114403. doi: 10.1016/j.compstruct.2021.114403
    [21] Li Q H, Yin X, Huang B T, et al. Shear interfacial fracture of strain-hardening fiber-reinforced cementitious composites and concrete: A novel approach [J]. Engineering Fracture Mechanics, 2021, 253: 107849. doi: 10.1016/j.engfracmech.2021.107849
    [22] Li H, Xu S, Leung C K Y. Tensile and flexural properties of ultra high toughness cemontious composite [J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2009, 24(4): 677 − 683. doi: 10.1007/s11595-009-4677-5
    [23] Richard P, Cheyrezy M. Composition of reactive powder concretes [J]. Cement and Concrete Research, 1995, 25(7): 1501 − 1511. doi: 10.1016/0008-8846(95)00144-2
    [24] Japan Society of Civil Engineers. Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC)[R]. Tokyo: JSCE, 2008.
    [25] JGJ/T 70−2009, 建筑砂浆基本力学性能试验方法标准[S]. 北京: 中国建筑工业出版社, 2009.

    JGJ/T 70−2009, Standard for test method of basic properties of construction mortar [S]. Beijing: China Architecture & Building Press, 2009. (in Chinese)
    [26] GB/T 17671−1999, 水泥胶砂强度检验方法(ISO法)[S]. 北京: 中国标准出版社, 1999.

    GB/T 17671−1999, Method of testing cements - Determination of strength [S]. Beijing: Standards Press of China, 1999. (in Chinese)
    [27] CECS 13: 2009, 纤维混凝土试验方法标准[S]. 北京: 中国计划出版社, 2010.

    CECS 13: 2009, Standard test methods for fiber reinforced concrete [S]. Beijing: China Planning Press, 2010. (in Chinese)
    [28] Torelli G, Lees J M. Fresh state stability of vertical layers of concrete [J]. Cement and Concrete Research, 2019, 120: 227 − 243. doi: 10.1016/j.cemconres.2019.03.006
    [29] Li Q H, Xu S L. Experimental investigation and analysis on flexural performance of functionally graded composite beam crack-controlled by ultrahigh toughness cementitious composites [J]. Science in China Series E:Technological Sciences, 2009, 52(6): 1648 − 1664. doi: 10.1007/s11431-009-0161-x
    [30] Brault A, Lees J M. Wet casting of multiple mix horizontally layered concrete elements [J]. Construction and Building Materials, 2020, 247: 118514. doi: 10.1016/j.conbuildmat.2020.118514
    [31] Huang B T, Li Q H, Xu S L, et al. Development of reinforced ultra-high toughness cementitious composite permanent formwork: Experimental study and digital image correlation analysis [J]. Composite Structures, 2017, 180: 892 − 903. doi: 10.1016/j.compstruct.2017.08.016
    [32] Randl N. Design recommendations for interface shear transfer in fib Model Code 2010 [J]. Structural Concrete, 2013, 14(3): 230 − 241. doi: 10.1002/suco.201300003
    [33] 高丹盈, 朱海堂, 汤寄予. 纤维高强混凝土抗剪性能的试验研究[J]. 建筑结构学报, 2004(6): 88 − 92, 98. doi: 10.3321/j.issn:1000-6869.2004.06.013

    Gao Danying, Zhu Haitang, Tang Jiyu. Experimental study on behavior of fiber reinforced high-strength concrete under shear [J]. Journal of Building Structures, 2004(6): 88 − 92, 98. (in Chinese) doi: 10.3321/j.issn:1000-6869.2004.06.013
    [34] 邓明科, 刘华政, 马福栋, 等. 聚乙烯醇纤维改性高延性混凝土双面剪切试验及剪切韧性评价方法[J]. 复合材料学报, 2020, 37(2): 461 − 471.

    Deng Mingke, Liu Huazheng, Ma Fudong, et al. Double shear experiment of highly ductile concrete modified by polyvingl alcohol and shear toughness evaluation method [J]. Acta Materiae Compositae Sinica, 2020, 37(2): 461 − 471. (in Chinese)
    [35] JTG/T J22−2008, 公路桥梁加固设计规范[S]. 北京: 人民交通出版社, 2008.

    JTG/T J22−2008, Specifications for strengthening design of highway bridges [S]. Beijing: China Communications Press, 2008. (in Chinese)
    [36] ACI 318R-19, Building code requirements for structural concrete and commentary on building code requirements for structural concrete [S]. Farmington Hills: American Concrete Institute, 2019.
    [37] LRFD-8, AASHTO LRFD Bridge Design Specifications 8th ed. [S]. Washington DC: American Association of State Highway and Transportation Officials, 2017.
    [38] CAN/CSA-A23.3-04 (R2010), Design of concrete structures [S]. Toronto: Canadian Standards Association, 2010.
    [39] EN 1992-1-1, Eurocode 2: Design of concrete structures - Part 1-1 : General rules and rules for buildings [S]. Brussels: European Committee for Standardization, 2004.
    [40] fib−2010, fib Model code for concrete structures 2010 [S]. Lausanne: International Federation for Structural Concrete (fib), 2013.
    [41] Patnaik A K. Behavior of composite concrete beams with smooth interface [J]. Journal of Structural Engineering, 2001, 127(4): 359 − 366. doi: 10.1061/(ASCE)0733-9445(2001)127:4(359)
    [42] Graybeal B, Davis M. Cylinder or cube: Strength testing of 80 to 200 MPa (11.6 to 29 ksi) ultra-high-performance fiber-reinforced concrete [J]. ACI Materials Journal, 2008, 105(6): 603 − 609.
    [43] Yin H, Shirai K, Teo W. Numerical model for predicting the structural response of composite UHPC–concrete members considering the bond strength at the interface [J]. Composite Structures, 2019, 215: 185 − 197. doi: 10.1016/j.compstruct.2019.02.040
    [44] Dassault Systèmes. Abaqus analysis user's guide [R]. Providence: Dassault Systèmes Simulia Corp., 2016.
    [45] Tian H M, Chen W Z, Yang D S. Experimental and numerical analysis of the shear behaviour of cemented concrete–rock joints [J]. Rock Mechanics and Rock Engineering, 2015, 48(1): 213 − 222. doi: 10.1007/s00603-014-0560-6
    [46] Beushausen H, Höhlig B, Talotti M. The influence of substrate moisture preparation on bond strength of concrete overlays and the microstructure of the OTZ [J]. Cement and Concrete Research, 2017, 92: 84 − 91. doi: 10.1016/j.cemconres.2016.11.017
    [47] Wei J, Wu C, Chen Y, et al. Shear strengthening of reinforced concrete beams with high strength strain-hardening cementitious composites (HS-SHCC) [J]. Materials and Structures, 2020, 53(4): 102. doi: 10.1617/s11527-020-01537-1
    [48] Martín-Sanz H, Herraiz B, Brühwiler E, et al. Shear-bending failure modeling of concrete ribbed slabs strengthened with UHPFRC [J]. Engineering Structures, 2020, 222: 110846. doi: 10.1016/j.engstruct.2020.110846
    [49] Lee Y H, Joo Y T, Lee T, et al. Mechanical properties of constitutive parameters in steel-concrete interface [J]. Engineering Structures, 2011, 33(4): 1277 − 1290. doi: 10.1016/j.engstruct.2011.01.005
    [50] Mollazadeh M H, Wang Y C. New insights into the mechanism of load introduction into concrete-filled steel tubular column through shear connection [J]. Engineering Structures, 2014, 75: 139 − 151. doi: 10.1016/j.engstruct.2014.06.002
    [51] De Maio U, Fabbrocino F, Greco F, et al. A study of concrete cover separation failure in FRP-plated RC beams via an inter-element fracture approach [J]. Composite Structures, 2019, 212: 625 − 636. doi: 10.1016/j.compstruct.2019.01.025
    [52] Hussein H H, Walsh K K, Sargand S M. Modeling the shear connection in adjacent box-beam bridges with ultrahigh-performance concrete joints. I: Model calibration and validation [J]. Journal of Bridge Engineering, 2017, 22(8): 04017043. doi: 10.1061/(ASCE)BE.1943-5592.0001070
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  166
  • HTML全文浏览量:  88
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-12
  • 修回日期:  2021-09-23
  • 网络出版日期:  2021-09-30
  • 刊出日期:  2022-08-01

目录

    /

    返回文章
    返回