EXPERIMENTAL STUDY ON THE INTERFACIAL SHEAR STRENGTH BETWEEN ULTRA-HIGH TOUGHNESS CEMENTITIOUS COMPOSITES AND REACTIVE POWDER CONCRETE
-
摘要: 该研究使用双面剪切试验对500 d长龄期的超高韧性水泥基复合材料(UHTCC)、活性粉末混凝土(RPC)和UHTCC/RPC界面的剪切强度进行了测试,并结合数字图像相关技术对其破坏过程进行了观测。结果表明,UHTCC、RPC和UHTCC/RPC界面均表现出良好的剪切延性,在加载过程中均未发生脆性破坏。此外,改进浇筑工艺和提高粘结界面的粗糙度均能够提高UHTCC/RPC界面剪切强度。将现有的界面剪切强度计算经验公式与试验结果对比发现现有的经验公式无法准确预测UHTCC/RPC的界面剪切强度。该研究建立了UHTCC/RPC界面剪切试验的有限元分析模型,并使用COHESIVE单元模拟界面行为,模拟结果与试验结果吻合较好。
-
关键词:
- 超高韧性水泥基复合材料 /
- 活性粉末混凝土 /
- 界面剪切强度 /
- 有限元分析 /
- 数字图像相关技术
Abstract: In this study, the shear strength of 500-day long-age ultra-high toughness cementitious composites (UHTCC), reactive powder concrete (RPC), and the interface of UHTCC/RPC was tested by double-shear test. The failure process was observed by the digital image correlation technique. The results show that the UHTCC, RPC, and the interface of UHTCC/RPC exhibit good shear toughness and no brittle failure during loading. In addition, the improved casting process and increased roughness of the interface can increase the interfacial shear strength of UHTCC/RPC. Comparison of the existing empirical formulas for calculating the interfacial shear strength with the test results revealed that the existing empirical formulas could not predict the interfacial shear strength of UHTCC/RPC accurately. A finite element analysis model of UHTCC/RPC interface shear test was established and the interfacial behavior was modelled by COHESIVE elements. The simulation results were in good agreement with the test results. -
表 1 纤维的性能指标
Table 1. Properties of fibers
性能指标 PVA纤维 钢纤维 长度/mm 12 13 直径/mm 0.04 0.21 拉伸强度/MPa 1620 2750 弹性模量/GPa 42.8 206 伸长率/(%) 7 − 质量密度/(kg/m3) 1300 7800 表 2 UHTCC与RPC的基本力学性能汇总
Table 2. Summaries of basic mechanical properties of UHTCC and RPC
性能指标 UHTCC RPC 平均抗拉强度/MPa 4.28 ± 0.22 10.43 ± 0.58 平均极限拉伸应变/(%) ≈ 3.2 ≈ 0.3 平均立方体抗压强度/MPa 58.48 ± 3.28 146.94 ± 5.47 平均抗折强度/MPa 28.83 ± 0.58 51.51 ± 3.12 表 3 试件信息
Table 3. Details of specimens
编号 试验内容 浇筑方式 界面粗糙度 ST-UHTCC 材料剪切强度 一次性浇筑 − ST-RPC 材料剪切强度 一次性浇筑 − IST-WW 界面剪切强度 先浇筑UHTCC,
在其初凝前于其上浇筑RPC无 IST-WH-N 界面剪切强度 在硬化UHTCC上浇筑RPC 无 IST-WH-L 界面剪切强度 在硬化UHTCC上浇筑RPC 低 IST-WH-H 界面剪切强度 在硬化UHTCC上浇筑RPC 高 表 4 双剪强度
Table 4. Double-shear strength
试验组别 双剪强度/MPa 平均值/
MPa标准差/
MPa平均值与UHTCC
剪切强度的比值试件1 试件2 试件3 ST-UHTCC 6.56 6.23 5.81 6.20 0.31 1.00 ST-RPC 20.87 19.91 19.88 20.22 0.46 3.26 IST-WW 3.84 4.53 4.37 4.25 0.29 0.69 IST-WH-N 1.23 1.20 1.26 1.23 0.02 0.20 IST-WH-L 1.92 1.83 1.73 1.82 0.08 0.29 IST-WH-H 3.64 3.26 3.37 3.42 0.16 0.55 表 5 使用经验公式计算界面剪切强度
Table 5. Interfacial shear strength calculated by empirical formula
表 6 不同界面特性下c的取值
Table 6. Value of c under different interface characteristics
浇筑方式 界面粗糙度 c 先浇筑UHTCC,
在其初凝前于其上浇筑RPC− 0.59 在硬化UHTCC上浇筑RPC 光滑 0.17 在硬化UHTCC上浇筑RPC 低粗糙度 (Rt=1.0 mm) 0.25 在硬化UHTCC上浇筑RPC 高粗糙度 (Rt=1.4 mm) 0.46 -
[1] McVay M K. Spalling damage of concrete structures (Technical report SL-88-22) [R]. Vicksburg: US Army Crops of Engineers, 1988. [2] 郑文忠, 吕雪源. 活性粉末混凝土研究进展[J]. 建筑结构学报, 2015, 36(10): 44 − 58.Zheng Wenzhong, Lü Xueyuan. Literature review of reactive powder concrete [J]. Journal of Building Structures, 2015, 36(10): 44 − 58. (in Chinese) [3] 樊健生, 王哲, 杨松, 等. 超高性能混凝土板冲切与弯曲性能研究[J]. 工程力学, 2021, 38(4): 30 − 43. doi: 10.6052/j.issn.1000-4750.2020.06.0349Fan Jiansheng, Wang Zhe, Yang Song, et al. Research on punching shear and bending behavior of ultra-high performance concrete slabs [J]. Engineering Mechanics, 2021, 38(4): 30 − 43. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0349 [4] Li J, Wu C Q, Hao H, et al. Experimental investigation of ultra-high performance concrete slabs under contact explosions [J]. International Journal of Impact Engineering, 2016, 93: 62 − 75. doi: 10.1016/j.ijimpeng.2016.02.007 [5] Li V C, Leung C K Y. Steady-state and multiple cracking of short random fiber composites [J]. Journal of Engineering Mechanics-ASCE, 1992, 118(11): 2246 − 2264. doi: 10.1061/(ASCE)0733-9399(1992)118:11(2246) [6] Li V C. Engineered Cementitious Composites (ECC) [M]. Berlin: Springer, 2019. [7] 徐世烺, 李庆华. 超高韧性水泥基复合材料在高性能建筑结构中的基本应用[M]. 北京: 科学出版社, 2010.Xu Shilang, Li Qinghua. Basic application of ultra high toughness cementitious composites in advanced engineering structures [M]. Beijing: Science Press, 2010. (in Chinese) [8] 李庆华, 舒程岚青, 徐世烺. 超高韧性水泥基复合材料的层裂试验研究[J]. 工程力学, 2020, 37(4): 51 − 59. doi: 10.6052/j.issn.1000-4750.2019.02.0060Li Qinghua, Shu Chenglanqing, Xu Shilang. Experimental study on spall behavior of ultra-high toughness cementitious composites [J]. Engineering Mechanics, 2020, 37(4): 51 − 59. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.02.0060 [9] 徐世烺, 李锐, 李庆华, 等. 超高韧性水泥基复合材料功能梯度板接触爆炸数值模拟[J]. 工程力学, 2020, 37(8): 123 − 133, 178. doi: 10.6052/j.issn.1000-4750.2019.09.0548Xu Shilang, Li Rui, Li Qinghua, et al. Numerical simulation of functionally graded slabs of ultra-high toughness cementitious composites under contact explosion [J]. Engineering Mechanics, 2020, 37(8): 123 − 133, 178. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.09.0548 [10] 董坤, 郝建文, 李鹏, 等. 环境温差下FRP-混凝土界面粘结行为分析[J]. 工程力学, 2020, 37(11): 117 − 126. doi: 10.6052/j.issn.1000-4750.2019.12.0783Dong Kun, Hao Jianwen, Li Peng, et al. Studies on the bond performance of FRP-to-concrete interfaces under environmental temperature difference [J]. Engineering Mechanics, 2020, 37(11): 117 − 126. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0783 [11] 李锐. 超高韧性水泥基复合材料功能梯度板抗爆炸数值模拟[D]. 杭州: 浙江大学, 2020.Li Rui. Numerical simulation of ultra-high toughness cementitious composite functionally graded slabs subjected to blast loading [D]. Hangzhou: Zhejiang University, 2020. (in Chinese) [12] Espeche A D, León J. Estimation of bond strength envelopes for old-to-new concrete interfaces based on a cylinder splitting test [J]. Construction and Building Materials, 2011, 25(3): 1222 − 1235. doi: 10.1016/j.conbuildmat.2010.09.032 [13] 王楠, 徐世烺. 超高韧性水泥基复合材料与既有混凝土黏结性能[J]. 建筑材料学报, 2011, 14(3): 317 − 323. doi: 10.3969/j.issn.1007-9629.2011.03.006Wang Nan, Xu Shilang. Bonding performance between ultra high toughness cementitious composites and existing concrete [J]. Journal of Building Materials, 2011, 14(3): 317 − 323. (in Chinese) doi: 10.3969/j.issn.1007-9629.2011.03.006 [14] Wang B, Li Q, Liu F, et al. Shear bond assessment of UHTCC repair using push-out test [J]. Construction and Building Materials, 2018, 164: 206 − 216. doi: 10.1016/j.conbuildmat.2017.12.148 [15] Gao S, Zhao X, Qiao J, et al. Study on the bonding properties of Engineered Cementitious Composites (ECC) and existing concrete exposed to high temperature [J]. Construction and Building Materials, 2019, 196: 330 − 344. doi: 10.1016/j.conbuildmat.2018.11.136 [16] Jang H O, Lee H S, Cho K, et al. Experimental study on shear performance of plain construction joints integrated with ultra-high performance concrete (UHPC) [J]. Construction and Building Materials, 2017, 152: 16 − 23. doi: 10.1016/j.conbuildmat.2017.06.156 [17] Valikhani A, Jahromi A J, Mantawy I M, et al. Experimental evaluation of concrete-to-UHPC bond strength with correlation to surface roughness for repair application [J]. Construction and Building Materials, 2020, 238: 117753. doi: 10.1016/j.conbuildmat.2019.117753 [18] Ju Y, Shen T, Wang D. Bonding behavior between reactive powder concrete and normal strength concrete [J]. Construction and Building Materials, 2020, 242: 118024. doi: 10.1016/j.conbuildmat.2020.118024 [19] Farzad M, Shafieifar M, Azizinamini A. Experimental and numerical study on bond strength between conventional concrete and Ultra High-Performance Concrete (UHPC) [J]. Engineering Structures, 2019, 186: 297 − 305. doi: 10.1016/j.engstruct.2019.02.030 [20] Xu S, Guo K, Li Q, et al. Shear fracture performance of the interface between ultra-high toughness cementitious composites and reactive powder concrete [J]. Composite Structures, 2021, 275: 114403. doi: 10.1016/j.compstruct.2021.114403 [21] Li Q H, Yin X, Huang B T, et al. Shear interfacial fracture of strain-hardening fiber-reinforced cementitious composites and concrete: A novel approach [J]. Engineering Fracture Mechanics, 2021, 253: 107849. doi: 10.1016/j.engfracmech.2021.107849 [22] Li H, Xu S, Leung C K Y. Tensile and flexural properties of ultra high toughness cemontious composite [J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2009, 24(4): 677 − 683. doi: 10.1007/s11595-009-4677-5 [23] Richard P, Cheyrezy M. Composition of reactive powder concretes [J]. Cement and Concrete Research, 1995, 25(7): 1501 − 1511. doi: 10.1016/0008-8846(95)00144-2 [24] Japan Society of Civil Engineers. Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC)[R]. Tokyo: JSCE, 2008. [25] JGJ/T 70−2009, 建筑砂浆基本力学性能试验方法标准[S]. 北京: 中国建筑工业出版社, 2009.JGJ/T 70−2009, Standard for test method of basic properties of construction mortar [S]. Beijing: China Architecture & Building Press, 2009. (in Chinese) [26] GB/T 17671−1999, 水泥胶砂强度检验方法(ISO法)[S]. 北京: 中国标准出版社, 1999.GB/T 17671−1999, Method of testing cements - Determination of strength [S]. Beijing: Standards Press of China, 1999. (in Chinese) [27] CECS 13: 2009, 纤维混凝土试验方法标准[S]. 北京: 中国计划出版社, 2010.CECS 13: 2009, Standard test methods for fiber reinforced concrete [S]. Beijing: China Planning Press, 2010. (in Chinese) [28] Torelli G, Lees J M. Fresh state stability of vertical layers of concrete [J]. Cement and Concrete Research, 2019, 120: 227 − 243. doi: 10.1016/j.cemconres.2019.03.006 [29] Li Q H, Xu S L. Experimental investigation and analysis on flexural performance of functionally graded composite beam crack-controlled by ultrahigh toughness cementitious composites [J]. Science in China Series E:Technological Sciences, 2009, 52(6): 1648 − 1664. doi: 10.1007/s11431-009-0161-x [30] Brault A, Lees J M. Wet casting of multiple mix horizontally layered concrete elements [J]. Construction and Building Materials, 2020, 247: 118514. doi: 10.1016/j.conbuildmat.2020.118514 [31] Huang B T, Li Q H, Xu S L, et al. Development of reinforced ultra-high toughness cementitious composite permanent formwork: Experimental study and digital image correlation analysis [J]. Composite Structures, 2017, 180: 892 − 903. doi: 10.1016/j.compstruct.2017.08.016 [32] Randl N. Design recommendations for interface shear transfer in fib Model Code 2010 [J]. Structural Concrete, 2013, 14(3): 230 − 241. doi: 10.1002/suco.201300003 [33] 高丹盈, 朱海堂, 汤寄予. 纤维高强混凝土抗剪性能的试验研究[J]. 建筑结构学报, 2004(6): 88 − 92, 98. doi: 10.3321/j.issn:1000-6869.2004.06.013Gao Danying, Zhu Haitang, Tang Jiyu. Experimental study on behavior of fiber reinforced high-strength concrete under shear [J]. Journal of Building Structures, 2004(6): 88 − 92, 98. (in Chinese) doi: 10.3321/j.issn:1000-6869.2004.06.013 [34] 邓明科, 刘华政, 马福栋, 等. 聚乙烯醇纤维改性高延性混凝土双面剪切试验及剪切韧性评价方法[J]. 复合材料学报, 2020, 37(2): 461 − 471.Deng Mingke, Liu Huazheng, Ma Fudong, et al. Double shear experiment of highly ductile concrete modified by polyvingl alcohol and shear toughness evaluation method [J]. Acta Materiae Compositae Sinica, 2020, 37(2): 461 − 471. (in Chinese) [35] JTG/T J22−2008, 公路桥梁加固设计规范[S]. 北京: 人民交通出版社, 2008.JTG/T J22−2008, Specifications for strengthening design of highway bridges [S]. Beijing: China Communications Press, 2008. (in Chinese) [36] ACI 318R-19, Building code requirements for structural concrete and commentary on building code requirements for structural concrete [S]. Farmington Hills: American Concrete Institute, 2019. [37] LRFD-8, AASHTO LRFD Bridge Design Specifications 8th ed. [S]. Washington DC: American Association of State Highway and Transportation Officials, 2017. [38] CAN/CSA-A23.3-04 (R2010), Design of concrete structures [S]. Toronto: Canadian Standards Association, 2010. [39] EN 1992-1-1, Eurocode 2: Design of concrete structures - Part 1-1 : General rules and rules for buildings [S]. Brussels: European Committee for Standardization, 2004. [40] fib−2010, fib Model code for concrete structures 2010 [S]. Lausanne: International Federation for Structural Concrete (fib), 2013. [41] Patnaik A K. Behavior of composite concrete beams with smooth interface [J]. Journal of Structural Engineering, 2001, 127(4): 359 − 366. doi: 10.1061/(ASCE)0733-9445(2001)127:4(359) [42] Graybeal B, Davis M. Cylinder or cube: Strength testing of 80 to 200 MPa (11.6 to 29 ksi) ultra-high-performance fiber-reinforced concrete [J]. ACI Materials Journal, 2008, 105(6): 603 − 609. [43] Yin H, Shirai K, Teo W. Numerical model for predicting the structural response of composite UHPC–concrete members considering the bond strength at the interface [J]. Composite Structures, 2019, 215: 185 − 197. doi: 10.1016/j.compstruct.2019.02.040 [44] Dassault Systèmes. Abaqus analysis user's guide [R]. Providence: Dassault Systèmes Simulia Corp., 2016. [45] Tian H M, Chen W Z, Yang D S. Experimental and numerical analysis of the shear behaviour of cemented concrete–rock joints [J]. Rock Mechanics and Rock Engineering, 2015, 48(1): 213 − 222. doi: 10.1007/s00603-014-0560-6 [46] Beushausen H, Höhlig B, Talotti M. The influence of substrate moisture preparation on bond strength of concrete overlays and the microstructure of the OTZ [J]. Cement and Concrete Research, 2017, 92: 84 − 91. doi: 10.1016/j.cemconres.2016.11.017 [47] Wei J, Wu C, Chen Y, et al. Shear strengthening of reinforced concrete beams with high strength strain-hardening cementitious composites (HS-SHCC) [J]. Materials and Structures, 2020, 53(4): 102. doi: 10.1617/s11527-020-01537-1 [48] Martín-Sanz H, Herraiz B, Brühwiler E, et al. Shear-bending failure modeling of concrete ribbed slabs strengthened with UHPFRC [J]. Engineering Structures, 2020, 222: 110846. doi: 10.1016/j.engstruct.2020.110846 [49] Lee Y H, Joo Y T, Lee T, et al. Mechanical properties of constitutive parameters in steel-concrete interface [J]. Engineering Structures, 2011, 33(4): 1277 − 1290. doi: 10.1016/j.engstruct.2011.01.005 [50] Mollazadeh M H, Wang Y C. New insights into the mechanism of load introduction into concrete-filled steel tubular column through shear connection [J]. Engineering Structures, 2014, 75: 139 − 151. doi: 10.1016/j.engstruct.2014.06.002 [51] De Maio U, Fabbrocino F, Greco F, et al. A study of concrete cover separation failure in FRP-plated RC beams via an inter-element fracture approach [J]. Composite Structures, 2019, 212: 625 − 636. doi: 10.1016/j.compstruct.2019.01.025 [52] Hussein H H, Walsh K K, Sargand S M. Modeling the shear connection in adjacent box-beam bridges with ultrahigh-performance concrete joints. I: Model calibration and validation [J]. Journal of Bridge Engineering, 2017, 22(8): 04017043. doi: 10.1061/(ASCE)BE.1943-5592.0001070 -