留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内置FRP管的钢管混凝土边框剪力墙承载力分析

赖楚麟 郑振淡 任凤鸣

赖楚麟, 郑振淡, 任凤鸣. 内置FRP管的钢管混凝土边框剪力墙承载力分析[J]. 工程力学, 2022, 39(S): 27-34. doi: 10.6052/j.issn.1000-4750.2021.05.S001
引用本文: 赖楚麟, 郑振淡, 任凤鸣. 内置FRP管的钢管混凝土边框剪力墙承载力分析[J]. 工程力学, 2022, 39(S): 27-34. doi: 10.6052/j.issn.1000-4750.2021.05.S001
LAI Chu-lin, ZHENG Zhen-dan, REN Feng-ming. ANALYSIS OF LOAD-BEARING CAPACITY OF COMPOSITE SHEAR WALLS INCORPORATING CONCRETE-FILLED STEEL AND FRP TUBES AS BOUNDARY ELEMENTS[J]. Engineering Mechanics, 2022, 39(S): 27-34. doi: 10.6052/j.issn.1000-4750.2021.05.S001
Citation: LAI Chu-lin, ZHENG Zhen-dan, REN Feng-ming. ANALYSIS OF LOAD-BEARING CAPACITY OF COMPOSITE SHEAR WALLS INCORPORATING CONCRETE-FILLED STEEL AND FRP TUBES AS BOUNDARY ELEMENTS[J]. Engineering Mechanics, 2022, 39(S): 27-34. doi: 10.6052/j.issn.1000-4750.2021.05.S001

内置FRP管的钢管混凝土边框剪力墙承载力分析

doi: 10.6052/j.issn.1000-4750.2021.05.S001
基金项目: 国家自然科学基金面上项目(51878189);广州市“羊城学者”科研项目(202032849)
详细信息
    作者简介:

    赖楚麟(1996−),男,广东惠州人,硕士生,主要从事组合结构研究(E-mail: 2111916019@e.gzhu.edu.cn)

    郑振淡(1996−),男,广东汕尾人,硕士生,主要从事组合结构研究(E-mail: zzhendan@163.com)

    通讯作者:

    任凤鸣(1975−),女,陕西宝鸡人,教授,博士,博导,主要从事组合结构性能与设计方法研究(E-mail: rfm@gzhu.edu.cn)

  • 中图分类号: TU398+.2

ANALYSIS OF LOAD-BEARING CAPACITY OF COMPOSITE SHEAR WALLS INCORPORATING CONCRETE-FILLED STEEL AND FRP TUBES AS BOUNDARY ELEMENTS

  • 摘要: 内置FRP管的钢管混凝土边框剪力墙由钢筋混凝土、钢管混凝土和FRP约束混凝土组合而成,具有优良的力学性能和抗震性能。结合拟静力试验结果,对该组合剪力墙的受力机理进行研究,并对钢管混凝土和内置FRP约束混凝土的应力状态进行分析和简化,从而建立内置FRP管的钢管混凝土边框剪力墙的极限承载力计算公式。通过与试验结果的对比分析,验证该承载力公式的正确性和适用性,为进一步的研究以及推广应用提供可靠的理论依据。
  • 图  1  内置FRP管的钢管混凝土边框剪力墙示意图

    Figure  1.  Schematic diagram of composites shear walls incorporating CFSTs and CFFTs as boundary elements

    图  2  试件截面尺寸及配筋图

    Figure  2.  Dimensions of shear wall and arrangement of reinforcement

    图  3  试验装置

    Figure  3.  Test setup

    图  4  CFST-CFRP-4截面纵向应变分布

    Figure  4.  Distribution of the longitudinal strains along the wall length of CFST-CFRP-4 specimen

    图  5  各试件骨架曲线

    Figure  5.  Skeleton curves of specimens

    图  6  钢管混凝土应力-应变曲线

    Figure  6.  Stress-strain curves of CFSTs

    图  7  剪力墙边框钢管混凝土受力示意图

    Figure  7.  Schematic diagram of stresses and strains of CFST boundary columns in composite shear walls

    图  8  钢管混凝土应力-应变曲线对比图

    Figure  8.  Comparisons of stress-strain curves of CFSTs

    图  9  FRP约束混凝土应力-应变曲线

    Figure  9.  Stress-strain curves of FRP confined concrete

    图  10  剪力墙边框FRP管约束混凝土受力示意图

    Figure  10.  Schematic diagram of stresses and strains of FRP-confined concrete in composite shear walls

    图  11  组合剪力墙承载力计算简图

    Figure  11.  Calculation diagram of load-bearing capacity of composite shear walls

    表  1  水平承载力的计算值和试验值对比

    Table  1.   Comparison of calculated and experimental values of horizontal bearing capacity

    试件编号计算值/kN试验值
    /kN
    误差/(%)
    CFST-GFRP-1710.7652.88.70
    CFST-GFRP-2710.5722.61.67
    CFST-CFRP-3730.2748.92.50
    CFST-CFRP-4755.2714.55.70
    注:误差δ = |(试验值−计算值)| /试验值。
    下载: 导出CSV
  • [1] Qian J, Jiang Z, Ji X. Behavior of steel tube-reinforced concrete composite walls subjected to high axial force and cyclic loading [J]. Engineering Structures, 2012, 36: 173 − 184. doi: 10.1016/j.engstruct.2011.10.026
    [2] Wang W, Wang Y, Lu Z. Experimental study on seismic behavior of steel plate reinforced concrete composite shear wall [J]. Engineering Structures, 2018, 160: 281 − 292. doi: 10.1016/j.engstruct.2018.01.050
    [3] Qiao Q Y, Cao W L, Li X Y, et al. Seismic behavior of shear walls with boundary CFST columns and embedded multiple steel plates: Experimental investigation [J]. Engineering Structures, 2018, 160: 243 − 256. doi: 10.1016/j.engstruct.2018.01.040
    [4] 蔡健, 巫博璘, 罗翼锋. 新型双层钢板-混凝土组合剪力墙力学性能研究[J]. 工程力学, 2020, 37(10): 134 − 144. doi: 10.6052/j.issn.1000-4750.2019.10.0680

    Cai Jian, Wu Bolin, Luo Yifeng. Mechanical behavior of new double-skin steel plate-concrete composite shear wall [J]. Engineering Mechanics, 2020, 37(10): 134 − 144. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.10.0680
    [5] 陶忠, 于清. FRP约束混凝土柱发展现状简述[J]. 工业建筑, 2005, 35(9): 1 − 4. doi: 10.3321/j.issn:1000-8993.2005.09.001

    Tao Zhong, Yu Qing. Summary of-state-of-the art of FRP-confined concrete columns [J]. Industrial Construction, 2005, 35(9): 1 − 4. (in Chinese) doi: 10.3321/j.issn:1000-8993.2005.09.001
    [6] Teng J G, Jiang T, Lam L, et al. Refinement of a design-oriented stress-strain model for FRP-confined concrete [J]. Journal of Composites for Construction, 2009, 13(4): 269 − 278. doi: 10.1061/(ASCE)CC.1943-5614.0000012
    [7] Ozbakkaloglu T. Compressive behavior of concrete-filled FRP tube columns: Assessment of critical column parameters [J]. Engineering Structures, 2013, 51: 188 − 199. doi: 10.1016/j.engstruct.2013.01.017
    [8] Teng J G, Yu T, Wong Y L, et al. Hybrid FRP-concrete-steel tubular columns: Concept and behavior [J]. Construction and Building Materials, 2007, 21(4): 846 − 854. doi: 10.1016/j.conbuildmat.2006.06.017
    [9] Yu T, Teng J G, Wong Y L. Stress-Strain behavior of concrete in hybrid FRP-concrete-steel double-skin tubular columns [J]. Journal of Structural Engineering, 2010, 136(4): 379 − 389. doi: 10.1061/(ASCE)ST.1943-541X.0000121
    [10] Yu T, Zhang S S, Huang L, et al. Compressive behavior of hybrid double-skin tubular columns with a large rupture strain FRP tube [J]. Composite Structures, 2017, 171: 10 − 18. doi: 10.1016/j.compstruct.2017.03.013
    [11] Ozbakkaloglu T, Idris Y. Seismic behavior of FRP-high-strength concrete-steel double-skin tubular columns [J]. Journal of Structural Engineering, 2014, 140(6): 04014019. doi: 10.1061/(ASCE)ST.1943-541X.0000981
    [12] Zheng J A, Ozbakkaloglu T. Sustainable FRP-recycled aggregate concrete-steel composite columns: Behavior of circular and square columns under axial compression [J]. Thin-Walled Structures, 2017, 120: 60 − 69. doi: 10.1016/j.tws.2017.08.011
    [13] 李帼昌, 张春雨, 于洪平. 内置CFRP圆管的方钢管高强混凝土结构研究进展[J]. 工程力学, 2012, 29(11): 57 − 68. doi: 10.6052/j.issn.1000-4750.2012.06.ST05

    Li Guochang, Zhang Chunyu, Yu Hongping. Advance in high-strength concrete filled square steel tubular structure with inner CFRP circular tube [J]. Engineering Mechanics, 2012, 29(11): 57 − 68. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.06.ST05
    [14] Feng P, Cheng S, Bai Y, et al. Mechanical behavior of concrete-filled square steel tube with FRP-confined concrete core subjected to axial compression [J]. Composite Structures, 2015, 123: 312 − 324. doi: 10.1016/j.compstruct.2014.12.053
    [15] Peng Feng, Shi Cheng, Tao Yu. Seismic performance of hybrid columns of concrete-filled square steel tube with FRP-confined concrete core [J]. Journal of Composites for Construction, 2018, 22(4): 04018015. doi: 10.1061/(ASCE)CC.1943-5614.0000849
    [16] 任凤鸣, 陈光明, 刘召鹏, 等. 钢管混凝土边框组合剪力墙开缝或开洞剪力墙[P]. 中国: CN201510705893.4, 2016-02-24.

    Ren Fengming, Chen Guangming, Liu Zhaopeng, et al. Cracking or opening shear wall of concrete filled steel tubular frame composite shear wall [P]. China: CN201510705893.4, 2016-02-24. (in Chinese)
    [17] Ren F M, Chen J W, Chen G M, et al. Seismic behavior of composite shear walls incorporating concrete-filled steel and FRP tubes as boundary elements [J]. Engineering Structures, 2018, 168: 405 − 419. doi: 10.1016/j.engstruct.2018.04.032
    [18] 孙建, 邱洪兴, 蒋洪波. 螺栓连接装配式一字形钢筋混凝土剪力墙承载力分析[J]. 建筑结构学报, 2019, 40(8): 23 − 30.

    Sun Jian, Qiu Hongxing, Jiang Hongbo. Analysis on load bearing capacities of rectangular precast reinforced concrete shear wall assembled by high strength bolts [J]. Journal of Building Structures, 2019, 40(8): 23 − 30. (in Chinese)
    [19] 方小丹, 韦宏, 黎奋辉. 钢管高强混凝土剪力墙轴压承载力研究[J]. 建筑结构学报, 2016, 37(8): 11 − 22.

    Fang Xiaodan, Wei Hong, Li Fenhui. Study on axial bearing capacity of shear wall with steel tube-confined high-strength concrete [J]. Journal of Building Structures, 2016, 37(8): 11 − 22. (in Chinese)
    [20] Hassan Moghimi, Robert G Driver. Performance-based capacity design of steel plate shear walls. I: Development principles [J]. Journal of Structural Engineering. 2014, 140(12): 04014097.
    [21] Jungil Seo, Amit H Varma. Behavior and design of steel-plate composite wall-to-wall corner or L-joints [J]. Nuclear Engineering and Design, 2017, 323: 317 − 328. doi: 10.1016/j.nucengdes.2017.04.008
    [22] Chen Z H, Jiang Y T, Zhang X M, et al. Parametric analysis and calculation method for bending and shear capacities of innovative composite shear walls [J]. Advances in Structural Engineering, 2017, 20(7): 1046 − 1058. doi: 10.1177/1369433216670171
    [23] GB 50936−2014, 钢管混凝土结构技术规范[S]. 北京: 中国建筑工业出版社, 2014.

    GB 50936−2014, Technical code for concrete filled steel tubular structures [S]. Beijing: China Architecture Industry Press, 2014. (in Chinese)
    [24] GB 50608−2010, 纤维增强复合材料建设工程应用技术规范[S]. 北京: 中国计划出版社, 2011.

    GB 50608−2010, Technical code for infrastructure application of FRP composites [S]. Beijing: China Planning Press, 2014. (in Chinese)
    [25] 韩林海. 钢管混凝土结构: 理论与实践[M]. 第2版. 北京: 科学出版社, 2007.

    Han Linhai. Concrete-filled steel tubular structure: theory and practice [M]. 2nd ed. Beijing: Science Press, 2007. (in Chinese)
    [26] An W, Saadatmanesh H, Ehsani M R. RC beams strengthened with FRP plates. II: Analysis and parametric study [J]. Journal of Structural Engineering, 1991, 117(11): 3434 − 3455. doi: 10.1061/(ASCE)0733-9445(1991)117:11(3434)
    [27] GB 50010−2010, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010.

    GB 50010−2010, Code for design of concrete structures [S]. Beijing: China Architecture Industry Press, 2014. (in Chinese)
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  31
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-21
  • 修回日期:  2022-01-22
  • 网络出版日期:  2022-02-26
  • 刊出日期:  2022-06-06

目录

    /

    返回文章
    返回