ANALYSIS OF LOAD-BEARING CAPACITY OF COMPOSITE SHEAR WALLS INCORPORATING CONCRETE-FILLED STEEL AND FRP TUBES AS BOUNDARY ELEMENTS
-
摘要: 内置FRP管的钢管混凝土边框剪力墙由钢筋混凝土、钢管混凝土和FRP约束混凝土组合而成,具有优良的力学性能和抗震性能。结合拟静力试验结果,对该组合剪力墙的受力机理进行研究,并对钢管混凝土和内置FRP约束混凝土的应力状态进行分析和简化,从而建立内置FRP管的钢管混凝土边框剪力墙的极限承载力计算公式。通过与试验结果的对比分析,验证该承载力公式的正确性和适用性,为进一步的研究以及推广应用提供可靠的理论依据。Abstract: Composite shear walls incorporating concrete-filled steel and FRP tubes as boundary elements are a new type of hybrid structural members and have excellent mechanical and seismic performance. Combined with the results of quasi-static tests, the stress mechanism of the composite shear wall was analyzed, and the stress states of concrete-filled steel tube and FRP-confined concrete were analyzed and simplified. Thus, the calculation formula of ultimate bearing capacity of composite shear walls was established. Through a comparison with the experimental results, the correctness and applicability of the bearing capacity formula were verified, which provides a reliable theoretical basis for further research and application.
-
表 1 水平承载力的计算值和试验值对比
Table 1. Comparison of calculated and experimental values of horizontal bearing capacity
试件编号 计算值/kN 试验值
/kN误差/(%) CFST-GFRP-1 710.7 652.8 8.70 CFST-GFRP-2 710.5 722.6 1.67 CFST-CFRP-3 730.2 748.9 2.50 CFST-CFRP-4 755.2 714.5 5.70 注:误差δ = |(试验值−计算值)| /试验值。 -
[1] Qian J, Jiang Z, Ji X. Behavior of steel tube-reinforced concrete composite walls subjected to high axial force and cyclic loading [J]. Engineering Structures, 2012, 36: 173 − 184. doi: 10.1016/j.engstruct.2011.10.026 [2] Wang W, Wang Y, Lu Z. Experimental study on seismic behavior of steel plate reinforced concrete composite shear wall [J]. Engineering Structures, 2018, 160: 281 − 292. doi: 10.1016/j.engstruct.2018.01.050 [3] Qiao Q Y, Cao W L, Li X Y, et al. Seismic behavior of shear walls with boundary CFST columns and embedded multiple steel plates: Experimental investigation [J]. Engineering Structures, 2018, 160: 243 − 256. doi: 10.1016/j.engstruct.2018.01.040 [4] 蔡健, 巫博璘, 罗翼锋. 新型双层钢板-混凝土组合剪力墙力学性能研究[J]. 工程力学, 2020, 37(10): 134 − 144. doi: 10.6052/j.issn.1000-4750.2019.10.0680Cai Jian, Wu Bolin, Luo Yifeng. Mechanical behavior of new double-skin steel plate-concrete composite shear wall [J]. Engineering Mechanics, 2020, 37(10): 134 − 144. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.10.0680 [5] 陶忠, 于清. FRP约束混凝土柱发展现状简述[J]. 工业建筑, 2005, 35(9): 1 − 4. doi: 10.3321/j.issn:1000-8993.2005.09.001Tao Zhong, Yu Qing. Summary of-state-of-the art of FRP-confined concrete columns [J]. Industrial Construction, 2005, 35(9): 1 − 4. (in Chinese) doi: 10.3321/j.issn:1000-8993.2005.09.001 [6] Teng J G, Jiang T, Lam L, et al. Refinement of a design-oriented stress-strain model for FRP-confined concrete [J]. Journal of Composites for Construction, 2009, 13(4): 269 − 278. doi: 10.1061/(ASCE)CC.1943-5614.0000012 [7] Ozbakkaloglu T. Compressive behavior of concrete-filled FRP tube columns: Assessment of critical column parameters [J]. Engineering Structures, 2013, 51: 188 − 199. doi: 10.1016/j.engstruct.2013.01.017 [8] Teng J G, Yu T, Wong Y L, et al. Hybrid FRP-concrete-steel tubular columns: Concept and behavior [J]. Construction and Building Materials, 2007, 21(4): 846 − 854. doi: 10.1016/j.conbuildmat.2006.06.017 [9] Yu T, Teng J G, Wong Y L. Stress-Strain behavior of concrete in hybrid FRP-concrete-steel double-skin tubular columns [J]. Journal of Structural Engineering, 2010, 136(4): 379 − 389. doi: 10.1061/(ASCE)ST.1943-541X.0000121 [10] Yu T, Zhang S S, Huang L, et al. Compressive behavior of hybrid double-skin tubular columns with a large rupture strain FRP tube [J]. Composite Structures, 2017, 171: 10 − 18. doi: 10.1016/j.compstruct.2017.03.013 [11] Ozbakkaloglu T, Idris Y. Seismic behavior of FRP-high-strength concrete-steel double-skin tubular columns [J]. Journal of Structural Engineering, 2014, 140(6): 04014019. doi: 10.1061/(ASCE)ST.1943-541X.0000981 [12] Zheng J A, Ozbakkaloglu T. Sustainable FRP-recycled aggregate concrete-steel composite columns: Behavior of circular and square columns under axial compression [J]. Thin-Walled Structures, 2017, 120: 60 − 69. doi: 10.1016/j.tws.2017.08.011 [13] 李帼昌, 张春雨, 于洪平. 内置CFRP圆管的方钢管高强混凝土结构研究进展[J]. 工程力学, 2012, 29(11): 57 − 68. doi: 10.6052/j.issn.1000-4750.2012.06.ST05Li Guochang, Zhang Chunyu, Yu Hongping. Advance in high-strength concrete filled square steel tubular structure with inner CFRP circular tube [J]. Engineering Mechanics, 2012, 29(11): 57 − 68. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.06.ST05 [14] Feng P, Cheng S, Bai Y, et al. Mechanical behavior of concrete-filled square steel tube with FRP-confined concrete core subjected to axial compression [J]. Composite Structures, 2015, 123: 312 − 324. doi: 10.1016/j.compstruct.2014.12.053 [15] Peng Feng, Shi Cheng, Tao Yu. Seismic performance of hybrid columns of concrete-filled square steel tube with FRP-confined concrete core [J]. Journal of Composites for Construction, 2018, 22(4): 04018015. doi: 10.1061/(ASCE)CC.1943-5614.0000849 [16] 任凤鸣, 陈光明, 刘召鹏, 等. 钢管混凝土边框组合剪力墙开缝或开洞剪力墙[P]. 中国: CN201510705893.4, 2016-02-24.Ren Fengming, Chen Guangming, Liu Zhaopeng, et al. Cracking or opening shear wall of concrete filled steel tubular frame composite shear wall [P]. China: CN201510705893.4, 2016-02-24. (in Chinese) [17] Ren F M, Chen J W, Chen G M, et al. Seismic behavior of composite shear walls incorporating concrete-filled steel and FRP tubes as boundary elements [J]. Engineering Structures, 2018, 168: 405 − 419. doi: 10.1016/j.engstruct.2018.04.032 [18] 孙建, 邱洪兴, 蒋洪波. 螺栓连接装配式一字形钢筋混凝土剪力墙承载力分析[J]. 建筑结构学报, 2019, 40(8): 23 − 30.Sun Jian, Qiu Hongxing, Jiang Hongbo. Analysis on load bearing capacities of rectangular precast reinforced concrete shear wall assembled by high strength bolts [J]. Journal of Building Structures, 2019, 40(8): 23 − 30. (in Chinese) [19] 方小丹, 韦宏, 黎奋辉. 钢管高强混凝土剪力墙轴压承载力研究[J]. 建筑结构学报, 2016, 37(8): 11 − 22.Fang Xiaodan, Wei Hong, Li Fenhui. Study on axial bearing capacity of shear wall with steel tube-confined high-strength concrete [J]. Journal of Building Structures, 2016, 37(8): 11 − 22. (in Chinese) [20] Hassan Moghimi, Robert G Driver. Performance-based capacity design of steel plate shear walls. I: Development principles [J]. Journal of Structural Engineering. 2014, 140(12): 04014097. [21] Jungil Seo, Amit H Varma. Behavior and design of steel-plate composite wall-to-wall corner or L-joints [J]. Nuclear Engineering and Design, 2017, 323: 317 − 328. doi: 10.1016/j.nucengdes.2017.04.008 [22] Chen Z H, Jiang Y T, Zhang X M, et al. Parametric analysis and calculation method for bending and shear capacities of innovative composite shear walls [J]. Advances in Structural Engineering, 2017, 20(7): 1046 − 1058. doi: 10.1177/1369433216670171 [23] GB 50936−2014, 钢管混凝土结构技术规范[S]. 北京: 中国建筑工业出版社, 2014.GB 50936−2014, Technical code for concrete filled steel tubular structures [S]. Beijing: China Architecture Industry Press, 2014. (in Chinese) [24] GB 50608−2010, 纤维增强复合材料建设工程应用技术规范[S]. 北京: 中国计划出版社, 2011.GB 50608−2010, Technical code for infrastructure application of FRP composites [S]. Beijing: China Planning Press, 2014. (in Chinese) [25] 韩林海. 钢管混凝土结构: 理论与实践[M]. 第2版. 北京: 科学出版社, 2007.Han Linhai. Concrete-filled steel tubular structure: theory and practice [M]. 2nd ed. Beijing: Science Press, 2007. (in Chinese) [26] An W, Saadatmanesh H, Ehsani M R. RC beams strengthened with FRP plates. II: Analysis and parametric study [J]. Journal of Structural Engineering, 1991, 117(11): 3434 − 3455. doi: 10.1061/(ASCE)0733-9445(1991)117:11(3434) [27] GB 50010−2010, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010.GB 50010−2010, Code for design of concrete structures [S]. Beijing: China Architecture Industry Press, 2014. (in Chinese) -