METHOD FOR CONCRETE SURFACE CRACKING DETECTION BASED ON ROV AND DIGITAL IMAGE TECHNOLOGY
-
摘要: 人工检测是目前桥梁水下结构病害检测的主要方式,存在着危险性高、效率低、准确性低等问题。针对以上问题,该文提出了采用搭载高清水下摄像头的水下机器人检测方法。该文在清水环境实验中对混凝土结构进行表观检测,通过图像处理、高斯滤波以及梯度计算的分权阈值法对存在裂缝的图像进行分析,提取裂缝边缘特征,提出基于斜率计算的欧氏距离下裂缝宽度计算方法实现对裂缝宽度的分析计算。实验结果表明:该文实验中裂缝检测结果精度较高,且裂缝的宽度参数计算精度可达规范要求。Abstract: Manual detection is the main disease detection way for bridge underwater structures, which has the problems of high risk, low efficiency and low accuracy. In response to the above problems, this paper proposes an underwater robot bridge detection method with high-definition underwater camera. The surface detection of concrete structures was carried out in clean water experiment. The image with cracks was analyzed by image processing, Gaussian filtering and gradient calculation of the weight threshold method, and the crack edge features were extracted; The calculation method of crack width under Euclidean distance based on slope calculation was adopted to realize the analysis and calculation of crack width. The experimental results show that the accuracy of crack detection results in this paper is high, and the calculation accuracy of crack width parameters can meet the requirements of code.
-
Key words:
- underwater vehicle /
- bridge detection /
- image processing /
- crack detection /
- crack width
-
表 1 裂缝宽度计算值与真实值对比
Table 1. Comparison between calculated value and real value of crack width
样本编号 计算宽度/mm 实际宽度/mm 误差/mm 相对误差/(%) 最小值 最大值 最小值 最大值 最小值 最大值 1 0.273 0.604 0.26 0.61 0.013 0.006 2.99 2 0.094 3.282 0.10 3.13 0.006 0.152 5.43 3 0.224 1.169 0.21 1.13 0.014 0.039 5.06 4 0.25 1.428 0.26 1.36 0.010 0.068 4.42 5 0.266 0.839 0.28 0.80 0.014 0.039 4.94 6 0.136 2.456 0.13 2.42 0.006 0.036 3.05 7 0.276 2.01 0.26 1.94 0.016 0.070 4.88 8 0.198 0.708 0.18 0.69 0.018 0.018 6.30 9 0.152 0.600 0.13 0.60 0.022 0.000 8.46 10 0.215 0.886 0.20 0.90 0.015 0.014 4.53 11 0.334 0.984 0.32 1.02 0.014 0.036 3.95 12 0.184 1.127 0.18 1.08 0.004 0.047 3.29 13 0.257 2.482 0.26 2.46 0.003 0.022 1.02 -
[1] JTG H11−2004, 公路桥涵养护规范[S]. 北京: 人民交通出版社, 2004.JTG H11−2004, Code for maintenance of highway bridges and culvers [S]. Beijing: China Communications Press, 2004. (in Chinese) [2] 朱前坤, 陈建邦, 张琼, 等. 基于计算机视觉人行桥挠度影响线非接触式识别[J]. 工程力学, 2021, 38(8): 145 − 153. doi: 10.6052/j.issn.1000-4750.2020.08.0557Zhu Qiankun, Chen Jianbang, Zhang Qiong, et al. A non-contact recognition for deflection influence line of footbridge based on computer vision [J]. Engineering Mechanics, 2021, 38(8): 145 − 153. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0557 [3] 杨娜, 张翀, 李天昊. 基于无人机与计算机视觉的中国古建筑木结构裂缝监测系统设计[J]. 工程力学, 2021, 38(3): 27 − 39. doi: 10.6052/j.issn.1000-4750.2020.04.0263Yang Na, Zhang Chong, Li Tianhao. Design of crack monitoring system for Chinse ancient wooden buildings base on UAV and CV [J]. Engineering Mechanics, 2021, 38(3): 27 − 39. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0263 [4] Ellenberg A, Kontsos A, Moon F, et al. Bridge related damage quantification using unmanned aerial vehicle imagery [J]. Structural Control and Health Monitoring, 2016, 23(9): 1168 − 1179. doi: 10.1002/stc.1831 [5] Hallermann N, Morgenthal G. Unmanned aerial vehicles (UAV) for the assessment of existing structures [C]// IABSE Symposium Report. Kolkata, ResearchGate, 2013: 1 − 8. [6] Nishikawa T, Yoshida J, Sugiyama T, et al. Concrete crack detection by multiple sequential image filtering [J]. Computer-Aided Civil and Infrastructure Engineering, 2012, 27(1): 29 − 47. doi: 10.1111/j.1467-8667.2011.00716.x [7] 王超, 贾贺, 张社荣, 等. 基于图像的混凝土表面裂缝量化高效识别方法[J]. 水力发电学报, 2021, 40(3): 134 − 144.Wang Chao, Jia He, Zhang Sherong, et al. Image based quantitative and efficient identification method for concrete surface cracks [J]. Journal of Hydroelectric Engineering, 2021, 40(3): 134 − 144. (in Chinese) [8] 陈波, 张华, 汪双, 等. 基于全卷积神经网络的坝面裂纹检测方法研究[J]. 水力发电学报, 2020, 39(7): 52 − 60.Chen Bo, Zhang Hua, Wang Shuang, et al. Image based quantitative and efficient identification method for concrete surface cracks [J]. Journal of Hydroelectric Engineering, 2020, 39(7): 52 − 60. (in Chinese) [9] Zhang X, Li X. Study on damage working behaviors of main pier pile foundation of sea crossing bridge [J]. Engineering and Computational Mechanics, 2018, 171(3): 1 − 30. [10] Park J Y, Jun B H, Lee P M, et al. Experiments on vision guided docking of an autonomous underwater vehicle using one camera [J]. Ocean Engineering, 2009, 36(1): 48 − 61. [11] Subashini. Comparison of filters used for underwater image preprocessing [J]. International Journal of Computer Science and Network Security: IJCSNS, 2010, 10(1): 58 − 65. [12] Zhai Y S, Liu X M, Ya-Yuan T U, et al. An improved for degraded image clearness algorithm [J]. Journal of Dalian Maritime University, 2007, 33(3): 55 − 58. [13] Seow M J, Asari V K. Ratio rule and homomorphic filter for enhancement of digital color image [J]. Neurocomputing, 2006, 69(7/9): 954 − 958. doi: 10.1016/j.neucom.2005.07.003 [14] Liu X, Rui N, Bo H, et al. A rapid weighted median filter based on saliency region for underwater image denoising [C]// OCEANS 2015 - MTS/IEEE Washington. Washington, IEEE, 2015. [15] Sun F, Zhang X, Wang G. An approach for underwater image denoising via wavelet decomposition and high-pass filter [C]// Fourth International Conference on Intelligent Computation Technology and Automation. Shenzhen, IEEE, 2011: 417 − 420. [16] 范新南, 顾丽萍, 巫鹏, 等. 一种仿水下生物视觉的大坝裂缝图像增强算法[J]. 光电子. 激光, 2014, 25(2): 372 − 377.Fan Xinnan, Gu Liping, Wu Peng, et al. A dam crack image enhancement algorithm based on underwater biological vision [J]. Journal of Optoelectronics. Laser, 2014, 25(2): 372 − 377. (in Chinese) [17] 马金祥, 范新南, 吴志祥, 等. 暗通道先验的大坝水下裂缝图像增强算法[J]. 中国图象图形学报, 2016, 21(12): 1574 − 1584. doi: 10.11834/jig.20161202Ma Jinxiang, Fan Xinnan, Wu Zhixiang, et al. Underwater dam crack image enhancement algorithm based on improved dark channel prior [J]. Journal of Image and Graphics, 2016, 21(12): 1574 − 1584. (in Chinese) doi: 10.11834/jig.20161202 [18] Bao L, Zhao C, Xue X, et al. Improved dark channel defogging algorithm for defect detection in underwater structures [J]. Advances in Materials Science and Engineering, 2020, 2020(2): 1 − 13. [19] 钟新谷, 彭雄, 沈明燕. 基于无人飞机成像的桥梁裂缝宽度识别可行性研究[J]. 土木工程学报, 2019, 52(4): 52 − 61.Zhong Xingu, Peng Xiong, Shen Mingyan. Study on the feasibility of identifying concrete crack width with images acquired by unmanned aerial vehicles [J]. China Civil Engineering Journal, 2019, 52(4): 52 − 61. (in Chinese) [20] 彭妍, 郭君斌, 于传强, 等. 基于平面变换的高精度相机标定方法[J]. 北京航空航天大学学报, doi: 10.13700/j.bh.1001-5965.2021.0015Peng Yan, Guo Junbin, Yu Chuanqiang, et al. High precision camera calibration method based on plane transformation [J]. Journal of Beijing University of Aeronautics and Astronautics, doi: 10.13700/j.bh.1001-5965.2021.0015 -