留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

RC框架-剪力墙结构的一致倒塌风险决策分析

董尧 吕大刚

董尧, 吕大刚. RC框架-剪力墙结构的一致倒塌风险决策分析[J]. 工程力学, 2022, 39(S): 71-77. doi: 10.6052/j.issn.1000-4750.2021.05.S011
引用本文: 董尧, 吕大刚. RC框架-剪力墙结构的一致倒塌风险决策分析[J]. 工程力学, 2022, 39(S): 71-77. doi: 10.6052/j.issn.1000-4750.2021.05.S011
DONG Yao, LÜ Da-gang. DECISION-MAKING ANALYSIS OF UNIFORM COLLAPSE RISK FOR RC FRAME-SHEAR WALL STRUCTURES[J]. Engineering Mechanics, 2022, 39(S): 71-77. doi: 10.6052/j.issn.1000-4750.2021.05.S011
Citation: DONG Yao, LÜ Da-gang. DECISION-MAKING ANALYSIS OF UNIFORM COLLAPSE RISK FOR RC FRAME-SHEAR WALL STRUCTURES[J]. Engineering Mechanics, 2022, 39(S): 71-77. doi: 10.6052/j.issn.1000-4750.2021.05.S011

RC框架-剪力墙结构的一致倒塌风险决策分析

doi: 10.6052/j.issn.1000-4750.2021.05.S011
基金项目: 国家自然科学基金面上项目(52078176,51678209);国家自然科学基金国际合作与交流项目(41861134010)
详细信息
    作者简介:

    董 尧(1995−),女,湖北仙桃人,博士生,主要从事一致风险抗震设计研究(E-mail: yaodong589@163.com)

    通讯作者:

    吕大刚(1970−),男,黑龙江铁力人,教授,博士,主要从事土木工程安全、风险与韧性研究(E-mail: ludagang@hit.edu.cn)

  • 中图分类号: TU398+.2

DECISION-MAKING ANALYSIS OF UNIFORM COLLAPSE RISK FOR RC FRAME-SHEAR WALL STRUCTURES

  • 摘要: 目标倒塌风险的决策是建筑结构一致倒塌风险抗震设计的关键科学问题之一。以按现行规范设计的钢筋混凝土(RC)框架-剪力墙结构为研究对象,采用第二代基于性能的地震工程方法,对5个不同设防等级的12层RC框架-剪力墙结构进行了概率地震损失评估,将直接经济损失、停工时间和人员伤亡数量统一货币化,同时考虑建筑结构服役期内的成本投入,根据设计基准期内总经济成本最小原则,决策得到RC框架-剪力墙结构的一致倒塌风险。研究结果表明:决策得到的不同设防等级RC框架-剪力墙结构的一致倒塌风险为50年倒塌概率0.26%(相当于年平均倒塌概率为5.26×105),与欧洲的一致倒塌风险目标50年超越概率0.25%非常接近,决策结果可为风险导向地震动区划图编制以及一致风险抗倒塌设计提供理论基础。
  • 图  1  倒塌全寿命风险决策示意图[15]

    Figure  1.  Schematic diagram of collapse life risk decision[15]

    图  2  RC框剪结构设计资料

    Figure  2.  Design data of RC frame-shear structure

    图  3  不同设防结构的全寿命地震风险

    Figure  3.  Life cycle seismic risks of structures with different fortifications

    图  4  RC框架剪力墙结构的一致倒塌风险决策

    Figure  4.  Uniform collapse risk decision of RC frame shear wall structure

    表  1  结构设计基本资料

    Table  1.   Basic information of structure design

    结构设计参数参数取值结构设计参数参数取值
    基本风压/(kN/m2)0.4基本雪压/(kN/m2)0.3
    地面粗糙度C类场地特征周期/s0.35
    楼面恒载/(kN/m2)5.0楼面活载/(kN/m2)2.0
    不上人屋面恒载/(kN/m2)7.0不上人屋面活载/(kN/m2)0.5
    梁、柱主筋等级HRB335箍筋等级HPB235
    下载: 导出CSV

    表  2  不同设防等级结构的年均损失评估

    Table  2.   The average annual loss assessment of structures with different fortification grade

    结构设防水平修复费用/元修复时间/天死亡人数/人受伤人数/人
    VI度(0.05 g)4787.02630.48270.00170.0111
    VII度(0.10 g)4889.00800.15740.00140.0100
    VII度(0.15 g)4702.69900.14730.00140.0095
    VIII度(0.20 g)4629.80900.14940.00120.0087
    VIII度(0.30 g)2987.98080.12210.00090.0069
    下载: 导出CSV

    表  3  结构在VII度(0.10 g)烈度场地下的倒塌概率

    Table  3.   Structural Collapse probability at VII (0.10 g) site

    设防烈度mIM /gβ/gPYPT/(%)
    VI度(0.05 g)0.7230.49605.844×10-50.292
    VII度(0.10 g)0.8050.50764.782×10-50.239
    VII度(0.15 g)0.8200.52154.748×10-50.237
    VIII度(0.20 g)0.8610.54994.584×10-50.229
    VIII度(0.30 g)0.9170.54163.934×10-50.196
    下载: 导出CSV

    表  4  RC框架-剪力墙模型结构的建造成本

    Table  4.   Construction costs of RC frame-shear wall structures

    设防等级钢砼材料费/
    万元
    核心结构/
    万元
    总结构/
    万元
    较6度设防造价
    增幅/(%)
    VI度(0.05 g)131.801083.171203.53
    VII度(0.10 g)163.691200.001333.3310.79
    VII度(0.15 g)174.531239.741377.4914.45
    VIII度(0.20 g)181.751266.201406.8916.90
    VIII度(0.30 g)221.951413.541570.6030.50
    下载: 导出CSV
  • [1] 张晓梅. 基于抗倒塌设防目标的设计地震动区划研究[D]. 北京: 中国地震局地球物理研究所, 2000.

    Zhang Xiaomei. Research on designing ground motion zoning based on anti-collapse fortification targets [D]. Beijing: Institute of Geophysics, China Earthquake Administration, 2000. (in Chinese)
    [2] 陈鲲. 针对大地震设防的地震动参数确定方法研究[D]. 北京: 中国地震局地球物理研究所, 2013.

    Chen Kun. Research on determination method of ground motion parameters for large earthquake fortification [D]. Beijing: Institute of Geophysics, China Earthquake Administration, 2013. (in Chinese)
    [3] 吕大刚, 周洲, 王丛, 等. 考虑巨震的四级地震设防水平一致风险导向定义与决策分析[J]. 土木工程学报, 2018, 51(11): 45 − 56.

    Lü Dagang, Zhou Zhou, Wang Cong, et al. Uniform risk-targeted definitions and decision-making of four seismic design levels considering very rare earthquake [J]. China Civil Engineering Journal, 2018, 51(11): 45 − 56. (in Chinese)
    [4] Luco N, Ellingwood B R, Hamburger R O, et al. Risk-Targeted versus Current Seismic Design Maps for the Conterminous United States [J]. Center for Integrated Data Analytics Wisconsin Science Center, 2007.
    [5] 施炜, 叶列平, 陆新征. 基于一致倒塌风险的建筑抗震评价方法研究[J]. 建筑结构学报, 2012, 33(6): 1 − 7.

    Shi Wei, Ye Lieping, Lu Xinzheng. Study on uniform collapse risk evaluation method for building structures under earthquakes [J]. Journal of Building Structures, 2012, 33(6): 1 − 7. (in Chinese)
    [6] 施炜. RC框架结构基于一致倒塌风险的抗震设计方法研究[D]. 北京: 清华大学, 2015.

    Shi Wei. Uniform Collapse Risk Targeted Seismic Design Methodology for Reinforced Concrete Frame Structures [D]. Beijing: Tsinghua University, 2015. (in Chinese)
    [7] 朱振宇. 大跨空间结构地震整体损伤与倒塌安全储备[D]. 大连: 大连理工大学, 2015.

    Zhu Zhenyu. Global seismic damage evolution and collapse margin of large-span space structures [D]. Dalian: Dalian University of Technology, 2015. (in Chinese)
    [8] 安宁. RC框架结构抗震可恢复性与一致倒塌概率[D]. 大连: 大连理工大学, 2016.

    An Ning. The structural seismic resilience and consistent collapse probability of reinforced concrete frame [D]. Dalian: Dalian University of Technology, 2016. (in Chinese)
    [9] 何政, 朱振宇, 刘婷婷. 单层球面网壳考虑一致倒塌概率的倒塌安全储备分析[J]. 工程力学, 2016, 33(10): 218 − 225. doi: 10.6052/j.issn.1000-4750.2015.03.0225

    He Zheng, Zhu Zhenyu, Liu Tingting. Collapse safety margin analysis of single-layer spherical lattice shells considering consistent collapse probability [J]. Engineering Mechanics, 2016, 33(10): 218 − 225. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.03.0225
    [10] 王丛, 吕大刚. 基于抗震规范和地震动区划图的风险导向地震动决策参数分析[J]. 建筑结构学报, 2020, 41(8): 19 − 28.

    Wang Cong, Lü Dagang. Analysis of risk-targeted decision parameters of seismic ground motions based on seismic design code and ground motion zonation map of China [J]. Journal of Building Structures, 2020, 41(8): 19 − 28. (in Chinese)
    [11] FEMA P-750. NEHRP recommended Provisions for Seismic Regulations for New Buildings and Other Structures [S]. Washington, D. C. : National Institute of Building Science, 2009.
    [12] FEMA P-1050. NEHRP recommended Provisions for Seismic Regulations for New Buildings and Other Structures [S]. Washington, D. C. : National Institute of Building Science, 2015.
    [13] Silva V, Crowley H, Bazzurro P. Advances on risk-targeted hazard estimation within the European context [C]// Proceedings of the 12th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP12), Vancouver Canada, 2015.
    [14] 吕大刚, 刘洋, 于晓辉. 第二代基于性能地震工程中的地震易损性模型及正逆概率风险分析[J]. 工程力学, 2019, 36(9): 1 − 11, 24. doi: 10.6052/j.issn.1000-4750.2018.07.ST08

    Lü Dagang, Liu Yang, Yu Xiaohui. Seismic fragility models and forward-backward probabilistic risk analysis in second-generation performance-based earthquake engineering [J]. Engineering Mechanics, 2019, 36(9): 1 − 11, 24. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.ST08
    [15] ISO 2394: 2015. General principles on reliability of structures [S]. Switzerland: International Organization for Standardization, 2015.
    [16] 王光远. 工程软设计理论[M]. 北京: 科学出版社, 1992.

    Wang Guangyuan. Theory of soft design in engineering [M]. Beijing: Science Press, 1992. (in Chinese)
    [17] 徐铭阳. 基于新型强度指标与CPU并行计算的框剪结构地震易损性分析[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    Xu MingYang. Seismic fragility analysis of frame-shear structures based on new intensity measures and CPU parallel computing [D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese)
    [18] 董尧. RC框架-剪力墙结构的抗震韧性评级与一致倒塌风险决策 [D]. 哈尔滨: 哈尔滨工业大学, 2019.

    Dong Yao. Seismic resilience rating and decision-making of uniform collapse risk of RC frame-shear wall structures [D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese)
    [19] Cornell C A, Jalayer F, Hamburger R O, et al. The probabilistic basis for the 2000 SAC/FEMA steel moment frame guidelines [J]. ASCE Journal of Structural Engineering, 2002, 128(4): 526 − 533. doi: 10.1061/(ASCE)0733-9445(2002)128:4(526)
    [20] FEMA P-58. Seismic performance assessment of buildings: Volume 2-Implementation Guide [S]. Washington. D. C. : Federal Emergency Management Agency, 2012.
    [21] TY01-89−2016, 建筑安装工程工期定额[S]. 北京: 计划出版社, 2016.

    TY01-89−2016, Quota of construction and installation engineering [S]. Beijing: China Planning Press, 2016. (in Chinese)
    [22] GB 50189−2015, 公共建筑节能设计标准[S]. 北京: 中国建筑工业出版社, 2015.

    GB 50189−2015, Standards for energy-saving design of public buildings [S]. Beijing: China Architecture & Building Press, 2015. (in Chinese)
    [23] Rackwitz R. Optimization and risk acceptability based on the Life Quality Index [J]. Structural Safety, 2002, 24(2/3/4): 297 − 331.
    [24] 吕大刚, 董尧, 王闽雄, 等. 基于改进生活质量指数的社会挽救生命成本及在地震生命损失估计中的应用[J]. 自然灾害学报, 2018, 27(4): 3 − 12.

    Lü Dagang, Dong Yao, Wang Minxiong, et al. Societal life saving cost based on improved LQI with applications to evaluation of earthquake fatality losses [J]. Journal of Natural Disaster, 2018, 27(4): 3 − 12. (in Chinese)
    [25] Ang H S, Lee J C. Cost optimal design of R/C buildings [J]. Reliability Engineering & System Safety, 2001, 73(3): 233 − 238.
    [26] Cornell C A. Engineer seismic risk analysis [J]. Bulletin of the Seismological Society of America, 1968, 58(5): 1583 − 1606. doi: 10.1785/BSSA0580051583
    [27] Ellingwood B R. Earthquake risk assessment of building structures [J]. Reliability Engineering and System Safety, 2001, 74(3): 251 − 262. doi: 10.1016/S0951-8320(01)00105-3
    [28] Bradley B A, Dhakal R P, Cubrinovski M, et al. Improved seismic hazard model with application to probabilistic seismic demand analysis [J]. Earthquake Engineering & Structural Dynamics, 2010, 36(14): 2211 − 2225.
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  37
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-28
  • 修回日期:  2022-02-02
  • 网络出版日期:  2022-03-01
  • 刊出日期:  2022-06-06

目录

    /

    返回文章
    返回