DECISION-MAKING ANALYSIS OF UNIFORM COLLAPSE RISK FOR RC FRAME-SHEAR WALL STRUCTURES
-
摘要: 目标倒塌风险的决策是建筑结构一致倒塌风险抗震设计的关键科学问题之一。以按现行规范设计的钢筋混凝土(RC)框架-剪力墙结构为研究对象,采用第二代基于性能的地震工程方法,对5个不同设防等级的12层RC框架-剪力墙结构进行了概率地震损失评估,将直接经济损失、停工时间和人员伤亡数量统一货币化,同时考虑建筑结构服役期内的成本投入,根据设计基准期内总经济成本最小原则,决策得到RC框架-剪力墙结构的一致倒塌风险。研究结果表明:决策得到的不同设防等级RC框架-剪力墙结构的一致倒塌风险为50年倒塌概率0.26%(相当于年平均倒塌概率为5.26×10−5),与欧洲的一致倒塌风险目标50年超越概率0.25%非常接近,决策结果可为风险导向地震动区划图编制以及一致风险抗倒塌设计提供理论基础。Abstract: The decision of target collapse risk is one of key scientific problems in uniform-collapse-risk seismic design of building structures. Reinforced concrete (RC) frame-shear wall structures are taken as research objects. By employing the second-generation performance-based earthquake engineering (PBEE) framework and methodology, the earthquake losses are evaluated for five 12-story RC frame-shear wall structures with different fortification levels, and then the direct economic losses, downtime and casualties are uniformly monetized. According to the principle of the minimum total life-cycle economic cost during the design period, the uniform collapse risk of RC frame-shear wall structures is determined. The results of the study show that the uniform collapse risk of RC frame-shear wall structures with different fortification levels is 0.26% over 50 years (equivalent to an average annual collapse probability of 5.26×10−5), which is extremely close to the European consensus collapse risk whose uniform collapse target is 0.25% over 50 years. It proves the rationality of this decision-making method and the accuracy of the decision-making results. The decision results of this paper can provide theoretical foundation for risk-targeted seismic ground motion parameter mapping and uniform-collapse-risk seismic design of structures.
-
表 1 结构设计基本资料
Table 1. Basic information of structure design
结构设计参数 参数取值 结构设计参数 参数取值 基本风压/(kN/m2) 0.4 基本雪压/(kN/m2) 0.3 地面粗糙度 C类 场地特征周期/s 0.35 楼面恒载/(kN/m2) 5.0 楼面活载/(kN/m2) 2.0 不上人屋面恒载/(kN/m2) 7.0 不上人屋面活载/(kN/m2) 0.5 梁、柱主筋等级 HRB335 箍筋等级 HPB235 表 2 不同设防等级结构的年均损失评估
Table 2. The average annual loss assessment of structures with different fortification grade
结构设防水平 修复费用/元 修复时间/天 死亡人数/人 受伤人数/人 VI度(0.05 g) 4787.0263 0.4827 0.0017 0.0111 VII度(0.10 g) 4889.0080 0.1574 0.0014 0.0100 VII度(0.15 g) 4702.6990 0.1473 0.0014 0.0095 VIII度(0.20 g) 4629.8090 0.1494 0.0012 0.0087 VIII度(0.30 g) 2987.9808 0.1221 0.0009 0.0069 表 3 结构在VII度(0.10 g)烈度场地下的倒塌概率
Table 3. Structural Collapse probability at VII (0.10 g) site
设防烈度 mIM /g β/g PY PT/(%) VI度(0.05 g) 0.723 0.4960 5.844×10-5 0.292 VII度(0.10 g) 0.805 0.5076 4.782×10-5 0.239 VII度(0.15 g) 0.820 0.5215 4.748×10-5 0.237 VIII度(0.20 g) 0.861 0.5499 4.584×10-5 0.229 VIII度(0.30 g) 0.917 0.5416 3.934×10-5 0.196 表 4 RC框架-剪力墙模型结构的建造成本
Table 4. Construction costs of RC frame-shear wall structures
设防等级 钢砼材料费/
万元核心结构/
万元总结构/
万元较6度设防造价
增幅/(%)VI度(0.05 g) 131.80 1083.17 1203.53 − VII度(0.10 g) 163.69 1200.00 1333.33 10.79 VII度(0.15 g) 174.53 1239.74 1377.49 14.45 VIII度(0.20 g) 181.75 1266.20 1406.89 16.90 VIII度(0.30 g) 221.95 1413.54 1570.60 30.50 -
[1] 张晓梅. 基于抗倒塌设防目标的设计地震动区划研究[D]. 北京: 中国地震局地球物理研究所, 2000.Zhang Xiaomei. Research on designing ground motion zoning based on anti-collapse fortification targets [D]. Beijing: Institute of Geophysics, China Earthquake Administration, 2000. (in Chinese) [2] 陈鲲. 针对大地震设防的地震动参数确定方法研究[D]. 北京: 中国地震局地球物理研究所, 2013.Chen Kun. Research on determination method of ground motion parameters for large earthquake fortification [D]. Beijing: Institute of Geophysics, China Earthquake Administration, 2013. (in Chinese) [3] 吕大刚, 周洲, 王丛, 等. 考虑巨震的四级地震设防水平一致风险导向定义与决策分析[J]. 土木工程学报, 2018, 51(11): 45 − 56.Lü Dagang, Zhou Zhou, Wang Cong, et al. Uniform risk-targeted definitions and decision-making of four seismic design levels considering very rare earthquake [J]. China Civil Engineering Journal, 2018, 51(11): 45 − 56. (in Chinese) [4] Luco N, Ellingwood B R, Hamburger R O, et al. Risk-Targeted versus Current Seismic Design Maps for the Conterminous United States [J]. Center for Integrated Data Analytics Wisconsin Science Center, 2007. [5] 施炜, 叶列平, 陆新征. 基于一致倒塌风险的建筑抗震评价方法研究[J]. 建筑结构学报, 2012, 33(6): 1 − 7.Shi Wei, Ye Lieping, Lu Xinzheng. Study on uniform collapse risk evaluation method for building structures under earthquakes [J]. Journal of Building Structures, 2012, 33(6): 1 − 7. (in Chinese) [6] 施炜. RC框架结构基于一致倒塌风险的抗震设计方法研究[D]. 北京: 清华大学, 2015.Shi Wei. Uniform Collapse Risk Targeted Seismic Design Methodology for Reinforced Concrete Frame Structures [D]. Beijing: Tsinghua University, 2015. (in Chinese) [7] 朱振宇. 大跨空间结构地震整体损伤与倒塌安全储备[D]. 大连: 大连理工大学, 2015.Zhu Zhenyu. Global seismic damage evolution and collapse margin of large-span space structures [D]. Dalian: Dalian University of Technology, 2015. (in Chinese) [8] 安宁. RC框架结构抗震可恢复性与一致倒塌概率[D]. 大连: 大连理工大学, 2016.An Ning. The structural seismic resilience and consistent collapse probability of reinforced concrete frame [D]. Dalian: Dalian University of Technology, 2016. (in Chinese) [9] 何政, 朱振宇, 刘婷婷. 单层球面网壳考虑一致倒塌概率的倒塌安全储备分析[J]. 工程力学, 2016, 33(10): 218 − 225. doi: 10.6052/j.issn.1000-4750.2015.03.0225He Zheng, Zhu Zhenyu, Liu Tingting. Collapse safety margin analysis of single-layer spherical lattice shells considering consistent collapse probability [J]. Engineering Mechanics, 2016, 33(10): 218 − 225. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.03.0225 [10] 王丛, 吕大刚. 基于抗震规范和地震动区划图的风险导向地震动决策参数分析[J]. 建筑结构学报, 2020, 41(8): 19 − 28.Wang Cong, Lü Dagang. Analysis of risk-targeted decision parameters of seismic ground motions based on seismic design code and ground motion zonation map of China [J]. Journal of Building Structures, 2020, 41(8): 19 − 28. (in Chinese) [11] FEMA P-750. NEHRP recommended Provisions for Seismic Regulations for New Buildings and Other Structures [S]. Washington, D. C. : National Institute of Building Science, 2009. [12] FEMA P-1050. NEHRP recommended Provisions for Seismic Regulations for New Buildings and Other Structures [S]. Washington, D. C. : National Institute of Building Science, 2015. [13] Silva V, Crowley H, Bazzurro P. Advances on risk-targeted hazard estimation within the European context [C]// Proceedings of the 12th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP12), Vancouver Canada, 2015. [14] 吕大刚, 刘洋, 于晓辉. 第二代基于性能地震工程中的地震易损性模型及正逆概率风险分析[J]. 工程力学, 2019, 36(9): 1 − 11, 24. doi: 10.6052/j.issn.1000-4750.2018.07.ST08Lü Dagang, Liu Yang, Yu Xiaohui. Seismic fragility models and forward-backward probabilistic risk analysis in second-generation performance-based earthquake engineering [J]. Engineering Mechanics, 2019, 36(9): 1 − 11, 24. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.ST08 [15] ISO 2394: 2015. General principles on reliability of structures [S]. Switzerland: International Organization for Standardization, 2015. [16] 王光远. 工程软设计理论[M]. 北京: 科学出版社, 1992.Wang Guangyuan. Theory of soft design in engineering [M]. Beijing: Science Press, 1992. (in Chinese) [17] 徐铭阳. 基于新型强度指标与CPU并行计算的框剪结构地震易损性分析[D]. 哈尔滨: 哈尔滨工业大学, 2019.Xu MingYang. Seismic fragility analysis of frame-shear structures based on new intensity measures and CPU parallel computing [D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese) [18] 董尧. RC框架-剪力墙结构的抗震韧性评级与一致倒塌风险决策 [D]. 哈尔滨: 哈尔滨工业大学, 2019.Dong Yao. Seismic resilience rating and decision-making of uniform collapse risk of RC frame-shear wall structures [D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese) [19] Cornell C A, Jalayer F, Hamburger R O, et al. The probabilistic basis for the 2000 SAC/FEMA steel moment frame guidelines [J]. ASCE Journal of Structural Engineering, 2002, 128(4): 526 − 533. doi: 10.1061/(ASCE)0733-9445(2002)128:4(526) [20] FEMA P-58. Seismic performance assessment of buildings: Volume 2-Implementation Guide [S]. Washington. D. C. : Federal Emergency Management Agency, 2012. [21] TY01-89−2016, 建筑安装工程工期定额[S]. 北京: 计划出版社, 2016.TY01-89−2016, Quota of construction and installation engineering [S]. Beijing: China Planning Press, 2016. (in Chinese) [22] GB 50189−2015, 公共建筑节能设计标准[S]. 北京: 中国建筑工业出版社, 2015.GB 50189−2015, Standards for energy-saving design of public buildings [S]. Beijing: China Architecture & Building Press, 2015. (in Chinese) [23] Rackwitz R. Optimization and risk acceptability based on the Life Quality Index [J]. Structural Safety, 2002, 24(2/3/4): 297 − 331. [24] 吕大刚, 董尧, 王闽雄, 等. 基于改进生活质量指数的社会挽救生命成本及在地震生命损失估计中的应用[J]. 自然灾害学报, 2018, 27(4): 3 − 12.Lü Dagang, Dong Yao, Wang Minxiong, et al. Societal life saving cost based on improved LQI with applications to evaluation of earthquake fatality losses [J]. Journal of Natural Disaster, 2018, 27(4): 3 − 12. (in Chinese) [25] Ang H S, Lee J C. Cost optimal design of R/C buildings [J]. Reliability Engineering & System Safety, 2001, 73(3): 233 − 238. [26] Cornell C A. Engineer seismic risk analysis [J]. Bulletin of the Seismological Society of America, 1968, 58(5): 1583 − 1606. doi: 10.1785/BSSA0580051583 [27] Ellingwood B R. Earthquake risk assessment of building structures [J]. Reliability Engineering and System Safety, 2001, 74(3): 251 − 262. doi: 10.1016/S0951-8320(01)00105-3 [28] Bradley B A, Dhakal R P, Cubrinovski M, et al. Improved seismic hazard model with application to probabilistic seismic demand analysis [J]. Earthquake Engineering & Structural Dynamics, 2010, 36(14): 2211 − 2225. -