留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

下击暴流作用下输电塔-线体系倒塌破坏研究

毕文哲 田利

毕文哲, 田利. 下击暴流作用下输电塔-线体系倒塌破坏研究[J]. 工程力学, 2022, 39(S): 78-83. doi: 10.6052/j.issn.1000-4750.2021.05.S012
引用本文: 毕文哲, 田利. 下击暴流作用下输电塔-线体系倒塌破坏研究[J]. 工程力学, 2022, 39(S): 78-83. doi: 10.6052/j.issn.1000-4750.2021.05.S012
BI Wen-zhe, TIAN Li. STUDY ON THE COLLAPSE FAILURE OF TRANSMISSION TOWER-LINE SYSTEM UNDER DOWNBURST[J]. Engineering Mechanics, 2022, 39(S): 78-83. doi: 10.6052/j.issn.1000-4750.2021.05.S012
Citation: BI Wen-zhe, TIAN Li. STUDY ON THE COLLAPSE FAILURE OF TRANSMISSION TOWER-LINE SYSTEM UNDER DOWNBURST[J]. Engineering Mechanics, 2022, 39(S): 78-83. doi: 10.6052/j.issn.1000-4750.2021.05.S012

下击暴流作用下输电塔-线体系倒塌破坏研究

doi: 10.6052/j.issn.1000-4750.2021.05.S012
基金项目: 山东大学青年学者未来计划项目(2017WLJH33)
详细信息
    作者简介:

    毕文哲(1997−),女,山东人,博士生,主要从事输电塔-线体系抗风研究 (E-mail: 845860312@qq.com)

    通讯作者:

    田 利(1982−),男,山东人,教授,博士,博导,主要从事结构防灾减灾工程研究 (E-mail: tianli@sdu.edu.cn)

  • 中图分类号: TM75;TU312+.3

STUDY ON THE COLLAPSE FAILURE OF TRANSMISSION TOWER-LINE SYSTEM UNDER DOWNBURST

  • 摘要: 下击暴流在近地面形成的短时破坏性强风会对建筑结构造成较大威胁,尤其是输电塔-线体系等风敏感结构。依托实际工程,该文建立了输电塔-线体系有限元模型,采用确定性-随机性混合模型生成下击暴流风场,基于Tian-Ma-Qu本构模型模拟了该结构在下击暴流作用下的连续倒塌过程。结果表明,下击暴流下输电塔表现为在极短时间内的局部大变形,该区域大量斜材和少量主材相继屈曲是导致输电塔发生整体倒塌的主要原因。该输电塔的薄弱部位是第六节间,在抗下击暴流设计中应重点关注。
  • 图  1  直线塔的平面尺寸与杆件构成 /mm

    Figure  1.  Dimension and configuration of the suspension tower

    图  2  “一塔两线”三维有限元模型 /m

    Figure  2.  Finite element model of transmission tower-line system

    图  3  下击暴流平均风速合成示意图

    Figure  3.  Vector diagram of average wind speed of downburst

    图  4  输电塔-线体系与下击暴流相对位置图 /m

    Figure  4.  Relative position between the transmission tower-line system and downburst

    图  5  塔身66.5 m处模拟点下击暴流风速时程

    Figure  5.  Time history of wind speed at height of 66.5 m

    图  6  Tian-Ma-Qu本构模型

    Figure  6.  Tian-Ma-Qu material model

    图  7  塔顶水平位移时程曲线和特定时刻变形图

    Figure  7.  Time-history curves of the tip displacement and deformed shape of the tower at specific time points

    图  8  杆件488轴向应力时程图

    Figure  8.  Axial force time-history curve of element488

    图  9  轴向应变峰值沿高度分布图

    Figure  9.  Peak axial strain along the height of the tower

    图  10  位移峰值沿高度分布图

    Figure  10.  Peak displacement along the height of the tower

  • [1] 刘慕广, 王树彬, 谢壮宁, 等. 基于位移测量的输电塔等效静风荷载研究[J]. 工程力学, 2017, 34(4): 160 − 166. doi: 10.6052/j.issn.1000-4750.2015.10.0869

    Liu Muguang, Wang Shubin, Xie Zhuangning, et al. Equivalent static wind load of transmission tower based on displacement measurement [J]. Engineering Mechanics, 2017, 34(4): 160 − 166. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.10.0869
    [2] 刘俊才, 田利, 张睿, 等. 远场地震作用下输电塔-线体系最不利输入方向预测研究[J]. 工程力学, 2020, 37(增刊 1): 97 − 103. doi: 10.6052/j.issn.1000-4750.2019.05.S014

    Liu Juncai, Tian Li, Zhang Rui, et al. Study on the prediction of the most adverse input direction of transmission tower-line system under far-field seismic ground motions [J]. Engineering Mechanics, 2020, 37(Suppl 1): 97 − 103. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.05.S014
    [3] Dempsey D, White H B. Winds wreak havoc on lines [J]. Transmission & Distribution World, 1996, 48(6): 32 − 37.
    [4] 谢强, 张勇, 李杰. 华东电网500 kV任上5237线飑线风致倒塔事故调查分析[J]. 电网技术, 2006, 30(10): 59 − 63. doi: 10.3321/j.issn:1000-3673.2006.10.012

    Xie Qiang, Zhang Yong, Li Jie. Investigation on tower collapse of 500 kV Renshang 5237 transmission line caused by downburst [J]. Power System Technology, 2006, 30(10): 59 − 63. (in Chinese) doi: 10.3321/j.issn:1000-3673.2006.10.012
    [5] Fu D, Yang F, Li Q, et al. Simulations for tower collapses of 500kV Zhengxiang transmission line induced by the downburst [C]// 2010 International Conference on Power System Technology: Technological Innovations Making Power Grid Smarter, Hangzhou, China: IEEE, 2010.
    [6] 姚旦, 沈国辉, 潘峰, 等. 基于向量式有限元的输电塔风致动力响应研究[J]. 工程力学, 2015, 32(11): 63 − 70. doi: 10.6052/j.issn.1000-4750.2013.08.0795

    Yao Dan, Shen Guohui, Pan Feng, et al. Wind-induced dynamic response of transmission tower using vector-form intrinsic finite element method [J]. Engineering Mechanics, 2015, 32(11): 63 − 70. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.08.0795
    [7] Shehata A Y, Damatty A, Savory E. Finite element modeling of transmission line under downburst wind loading [J]. Finite Elements in Analysis & Design, 2006, 42(1): 71 − 89.
    [8] Shehata A Y, Damatty A. Failure analysis of a transmission tower during a microburst [J]. Wind & Structures an International Journal, 2008, 11(3): 193 − 208.
    [9] Savory E, Parke G, Zeinoddini M. Modelling of tornado and microburst-induced wind loading and failure of a lattice transmission tower [J]. Engineering Structures, 2001, 23(4): 365 − 375. doi: 10.1016/S0141-0296(00)00045-6
    [10] Damatty A E, Elawady A. Critical load cases for lattice transmission line structures subjected to downbursts: Economic implications for design of transmission lines [J]. Engineering Structures, 2018, 159(15): 213 − 226.
    [11] 吉柏锋, 瞿伟廉, 王亮, 等. 下击暴流作用下输电塔弹塑性失稳倒塌研究[J]. 中国安全科学学报, 2014, 24(12): 90 − 95.

    Ji Baifeng, Qu Weilian, Wang Liang, et al. Elastic-plastic buckling collapse analysis of transmission tower under downburst [J]. China Safety Science Journal, 2014, 24(12): 90 − 95. (in Chinese)
    [12] Wang X, Lou W J, Li H N, et al. Wind-induced dynamic response of high-rise transmission tower under downburst wind load [J]. Journal of Zhejiang University(Engineering Science), 2009, 43(8): 1520 − 1525.
    [13] 魏文晖, 周翔, 邓晨, 等. 基于能量法的下击暴流作用下输电塔线体系失效倒塌研究[J]. 建筑科学与工程学报, 2020, 37(6): 73 − 80.

    Wei Wenhui, Zhou Xiang, Deng Chen, et al. Research on failure and collapse of transmission tower line system under downburst action based on energy method [J]. Journal of Architecture and Civil Engineering, 2020, 37(6): 73 − 80. (in Chinese)
    [14] Chen L, Letchford C W. A deterministic-stochastic hybrid model of downbursts and its impact on a cantilevered structure [J]. Engineering Structures, 2004, 26(5): 619 − 629. doi: 10.1016/j.engstruct.2003.12.009
    [15] Holmes J D, Oliver S E. An empirical model of a downburst [J]. Engineering Structures, 2000, 22(9): 1167 − 1172. doi: 10.1016/S0141-0296(99)00058-9
    [16] American Society of Civil Engineers. ASCE NO. 74-2009, Guidelines for electrical transmission line structural loading [S]. Reston, USA: Library of Congress Cataloging-in-Publication Data, 2009.
    [17] Tian L, MA R S, Pan H Y, et al. Progressive collapse analysis of long-span transmission tower-line system under multi-component seismic excitations [J]. Advances in Structural Engineering, 2017, 20: 1920 − 1932. doi: 10.1177/1369433217700426
    [18] 清华大学, 中国建筑科学研究. CECS 392: 2014, 建筑结构抗倒塌设计规范 [S]. 北京: 中国计划出版社, 2014.

    Tsinghua University, China Academy of Building Research. CECS 392: 2014, Code for anti-collapse design of building structures [S]. Beijing: China Planning Publishing House, 2014. (in Chinese)
  • 加载中
图(10)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  22
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-29
  • 修回日期:  2022-02-17
  • 网络出版日期:  2022-03-01
  • 刊出日期:  2022-06-06

目录

    /

    返回文章
    返回