留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液体调谐阻尼器对多高层结构的减震性能对比研究

董悦 唐贞云

董悦, 唐贞云. 液体调谐阻尼器对多高层结构的减震性能对比研究[J]. 工程力学, 2022, 39(S): 84-91, 100. doi: 10.6052/j.issn.1000-4750.2021.05.S013
引用本文: 董悦, 唐贞云. 液体调谐阻尼器对多高层结构的减震性能对比研究[J]. 工程力学, 2022, 39(S): 84-91, 100. doi: 10.6052/j.issn.1000-4750.2021.05.S013
DONG Yue, TANG Zhen-yun. COMPARATIVE RESEARCH ON SEISMIC PERFORMANCE OF TLD CONTROLLED MULTI-STOREY AND HIGH-RISE STRUCTURE[J]. Engineering Mechanics, 2022, 39(S): 84-91, 100. doi: 10.6052/j.issn.1000-4750.2021.05.S013
Citation: DONG Yue, TANG Zhen-yun. COMPARATIVE RESEARCH ON SEISMIC PERFORMANCE OF TLD CONTROLLED MULTI-STOREY AND HIGH-RISE STRUCTURE[J]. Engineering Mechanics, 2022, 39(S): 84-91, 100. doi: 10.6052/j.issn.1000-4750.2021.05.S013

液体调谐阻尼器对多高层结构的减震性能对比研究

doi: 10.6052/j.issn.1000-4750.2021.05.S013
基金项目: 国家自然科学基金项目(51978016)
详细信息
    作者简介:

    董 悦(1997−),女,山东人,硕士生,主要从事工程结构抗震研究(E-mail: dongyue97@foxmail.com)

    通讯作者:

    唐贞云(1983−),男,重庆人,副研究员,博士,主要从事工程结构抗震与减振、结构试验技术研究(E-mail: tzy@bjut.edu.cn)

  • 中图分类号: TU352.1

COMPARATIVE RESEARCH ON SEISMIC PERFORMANCE OF TLD CONTROLLED MULTI-STOREY AND HIGH-RISE STRUCTURE

  • 摘要: 调谐液体阻尼器(TLD)是一种典型有效的结构动力响应被动控制装置,可用于控制风致振动和地震响应。针对传统振动台缩尺试验的局限,该文采用振动台实时子结构试验研究了TLD对低层、中层和高层结构地震线性响应阶段及高层结构地震非线性响应阶段的影响。分别讨论了TLD频率与结构一阶频率比、TLD质量比以及地震激励幅值对TLD减震性能的影响规律。研究结果表明:当结构响应处于线性阶段时,TLD对加速度控制效果优于位移响应,相比于中低层结构,更适于高层结构减震;由于地震的随机性,对中低层结构位移响应有可能产生不利影响。当结构响应进入非线性后,受限于TLD较窄的减震频带,TLD对结构减震效果呈现较大的离散性。
  • 图  1  多高层结构TLD减震实时子结构试验系统

    Figure  1.  Real-time hybrid testing system for TLD damping performance of multi-storey and high-rise structures

    图  2  试验装置图

    Figure  2.  Diagram of the testing device

    图  3  地震波傅里叶谱

    Figure  3.  Fourier spectrum of the seismic waves

    4  3层结构下TLD的减震性能

    4.  Damping performance of TLD for 3-storey structure

    5  9层结构下TLD的减震性能

    5.  6 Damping performance of TLD for 9-storey structure

    6  20层结构下TLD的减震性能

    6.  Damping performance of TLD for 20-storey structure

    图  7  TLD频率对20层结构非线性响应阶段的影响

    Figure  7.  Influence of TLD frequency on nonlinear response of 20-storey structure

    图  8  TLD质量对20层结构非线性响应阶段的影响

    Figure  8.  Influence of TLD mass on nonlinear response of 20-storey structure

    9  输入峰值加速度对20层结构非线性响应阶段的影响

    9.  Influence of PGA on nonlinear response of 20-storey structure

    表  1  Benchmark结构模型参数

    Table  1.   Structural parameters of the benchmark model

    三层结构 九层结构 二十层结构
    层数 质量/(×105 kg) 刚度/(×108 N/m) 层数 质量/(×105 kg) 刚度/(×108 N/m) 层数 质量/(×105 kg) 刚度/(×108 N/m) 层数 质量/(×105 kg) 刚度/(×108 N/m)
    1 9.57 2.65 1 10.10 3.18 1 5.63 3.17 11 5.52 2.32
    2 9.57 1.59 2 9.89 3.58 2 5.52 3.06 12 5.52 2.18
    3 10.40 1.14 3 9.89 3.30 3 5.52 2.89 13 5.52 2.10
    4 9.89 2.98 4 5.52 2.80 14 5.52 1.97
    5 9.89 2.80 5 5.52 2.75 15 5.52 1.84
    6 9.89 2.56 6 5.52 2.70 16 5.52 1.76
    7 9.89 2.00 7 5.52 2.64 17 5.52 1.58
    8 9.89 1.49 8 5.52 2.58 18 5.52 1.38
    9 9.89 1.21 9 5.52 2.53 19 5.52 1.12
    10 5.52 2.46 20 5.84 0.93
    下载: 导出CSV

    表  2  TLD模型参数

    Table  2.   Model parameters of TLD

    编号受控结构长/m宽/m高/m
    TLD-13层0.80.81.5
    TLD-29层、20层1.20.80.8
    TLD-32.02.11.2
    TLD-420层2.00.81.2
    下载: 导出CSV

    表  3  试验工况参数

    Table  3.   Parameters for test cases

    结构模型TLD结构响应阶段影响因素
    3层 TLD-1 线性 频率比 0.59;0.71;0.8;0.9;1
    质量比/(%) 1;2;6
    输入幅值/(m/s2) 0.5;1;1.5
    9层 TLD-2 频率比 1;1.22;1.45
    TLD-3 质量比/(%) 1.5;4;6
    20层 TLD-3、
    TLD-4
    频率比 1;1.15;1.46
    质量比/(%) 1;1.5;2
    输入幅值/(m/s2) 0.8;1;1.2
    TLD-3、
    TLD-4
    非线性 频率比 0.89;1;1.16;1.46
    质量比/(%) 0.5;1;1.5;2
    输入幅值/(m/s2) 1;1.2;1.5;1.6;1.8
    下载: 导出CSV
  • [1] Ueda T, Nakagaki R, Koshida K. Suppression of wind-induced vibration by dynamic dampers in tower-like structures [J]. Journal of Wind Engineering & Industrial Aerodynamics, 1992, 43(1/2/3): 1907 − 1918.
    [2] 楼梦麟, 韩博宇. 高层建筑环境振动TLD控制研究[J]. 工程力学, 2015, 32(增刊 1): 184 − 190. doi: 10.6052/j.issn.1000-4750.2014.05.S052

    Lou Menglin, Han Boyu. Research on TLD control to environmental vibration of high-rise buildings [J]. Engineering Mechanics, 2015, 32(Suppl 1): 184 − 190. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.05.S052
    [3] 陈鑫, 李爱群, 徐庆阳, 等. 基于遗传算法的高耸结构环形TLD满意优化设计[J]. 工程力学, 2016, 33(6): 77 − 84. doi: 10.6052/j.issn.1000-4750.2014.10.0918

    Chen Xin, Li Aiqun, Xu Qingyang, et al. Satisfaction optimum design of ring-shape TLD control for high-rise structure using genetic algorithm [J]. Engineering Mechanics, 2016, 33(6): 77 − 84. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.10.0918
    [4] 李春祥, 黄金枝, 刘艳霞, 等. 高层钢结构地震反应控制的MTLD系统优化设计[J]. 工程力学, 2000, 17(2): 119 − 128.

    Li Chunxiang, Huang Jinzhi, Liu Yanxia, et al. The optimum design of MTLD system for controlling the seismic responses of tall steel structures [J]. Engineering Mechanics, 2000, 17(2): 119 − 128. (in Chinese)
    [5] Banerji P, Murudi M, Shah A H, et al. Tuned liquid dampers for controlling earthquake response of structures [J]. Earthquake Engineering & Structural Dynamics, 2000, 29(5): 587 − 602.
    [6] Zhu F, Wang J T, Jin F, et al. Real-time hybrid simulation of the size effect of tuned liquid dampers [J]. Structural Control and Health Monitoring, 2017, 24: e1962. doi: 10.1002/stc.1962
    [7] Malekghasemi H. Experimental and analytical investigations of rectangular tuned liquid dampers (TLDs) [D]. Canada: University of Toronto, 2011.
    [8] Wang J T, Gui Y, Zhu F, et al. Real-time hybrid simulation of multi-story structures installed with tuned liquid damper [J]. Structural Control & Health Monitoring, 2016, 23(7): 1015 − 1031.
    [9] 洪越, 唐贞云, 何涛, 等. 大尺寸非线性实时动力子结构试验实现[J]. 振动工程学报, 2017, 30(6): 913 − 920.

    Hong Yue, Tang Zhenyun, He Tao, et al. The implementation of nonlinear real-time dynamics substructurting for large scale specimen [J]. Journal of Vibration Engineering, 2017, 30(6): 913 − 920. (in Chinese)
    [10] Ohtori Y, Chirstenson R E, Spencer B F. Benchmark control problems for seismically excited nonlinear buildings [J]. Journal of Engineering Mechanics, 2004, 130(4): 366 − 385. doi: 10.1061/(ASCE)0733-9399(2004)130:4(366)
    [11] Zhu F, Wang J T, Jin F, et al. Real-time hybrid simulation of full-scale tuned liquid column dampers to control multi-order modal responses of structures [J]. Engineering Structures, 2017, 138: 74 − 90. doi: 10.1016/j.engstruct.2017.02.004
    [12] Yao J T P. Concept of structural control [J]. Journal of the Structural Division, 1972, 98(7): 1567 − 1574. doi: 10.1061/JSDEAG.0003280
    [13] Tang Z Y, Dong Y, Liu H, et al. Frequency domain analysis method of tuned liquid damper controlled multi-degree of freedoms system subject to earthquake excitation [J]. Journal of Building Engineering, 2022, 48: 103910.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  28
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-30
  • 修回日期:  2022-02-23
  • 网络出版日期:  2022-04-16
  • 刊出日期:  2022-06-06

目录

    /

    返回文章
    返回