COMPARATIVE RESEARCH ON SEISMIC PERFORMANCE OF TLD CONTROLLED MULTI-STOREY AND HIGH-RISE STRUCTURE
-
摘要: 调谐液体阻尼器(TLD)是一种典型有效的结构动力响应被动控制装置,可用于控制风致振动和地震响应。针对传统振动台缩尺试验的局限,该文采用振动台实时子结构试验研究了TLD对低层、中层和高层结构地震线性响应阶段及高层结构地震非线性响应阶段的影响。分别讨论了TLD频率与结构一阶频率比、TLD质量比以及地震激励幅值对TLD减震性能的影响规律。研究结果表明:当结构响应处于线性阶段时,TLD对加速度控制效果优于位移响应,相比于中低层结构,更适于高层结构减震;由于地震的随机性,对中低层结构位移响应有可能产生不利影响。当结构响应进入非线性后,受限于TLD较窄的减震频带,TLD对结构减震效果呈现较大的离散性。Abstract: Tuned liquid damper (TLD) is an effective passive control device to control structural vibration under wind and earthquake loads. To overcome the disadvantage of scaled model in traditional shaking table test, a real-time hybrid testing system is established in this study to evaluate the seismic performance at the linear response stage of low-rise, middle-rise and high-rise buildings and the nonlinear seismic response of high-rise buildings with TLD. The influence of TLD frequency ratio, mass ratio and excitation amplitude on seismic performance are discussed. The results showed that when the structure is at the linear stage, TLD is more suitable for controlling the acceleration response. TLD performed more effective in suppressing the structural response of high-rise structure than low-rise and middle-rise structure. Because of the randomness of earthquake, TLD may have adverse effects on the dynamic response of low-rise and middle-rise structure. When the high-rise structure is at the nonlinear stage, the damping performance of TLD on the structural response shows strong discreteness due to the narrow damping frequency band of TLD.
-
表 1 Benchmark结构模型参数
Table 1. Structural parameters of the benchmark model
三层结构 九层结构 二十层结构 层数 质量/(×105 kg) 刚度/(×108 N/m) 层数 质量/(×105 kg) 刚度/(×108 N/m) 层数 质量/(×105 kg) 刚度/(×108 N/m) 层数 质量/(×105 kg) 刚度/(×108 N/m) 1 9.57 2.65 1 10.10 3.18 1 5.63 3.17 11 5.52 2.32 2 9.57 1.59 2 9.89 3.58 2 5.52 3.06 12 5.52 2.18 3 10.40 1.14 3 9.89 3.30 3 5.52 2.89 13 5.52 2.10 − − − 4 9.89 2.98 4 5.52 2.80 14 5.52 1.97 − − − 5 9.89 2.80 5 5.52 2.75 15 5.52 1.84 − − − 6 9.89 2.56 6 5.52 2.70 16 5.52 1.76 − − − 7 9.89 2.00 7 5.52 2.64 17 5.52 1.58 − − − 8 9.89 1.49 8 5.52 2.58 18 5.52 1.38 − − − 9 9.89 1.21 9 5.52 2.53 19 5.52 1.12 − − − − − − 10 5.52 2.46 20 5.84 0.93 表 2 TLD模型参数
Table 2. Model parameters of TLD
编号 受控结构 长/m 宽/m 高/m TLD-1 3层 0.8 0.8 1.5 TLD-2 9层、20层 1.2 0.8 0.8 TLD-3 2.0 2.1 1.2 TLD-4 20层 2.0 0.8 1.2 表 3 试验工况参数
Table 3. Parameters for test cases
结构模型 TLD 结构响应阶段 影响因素 3层 TLD-1 线性 频率比 0.59;0.71;0.8;0.9;1 质量比/(%) 1;2;6 输入幅值/(m/s2) 0.5;1;1.5 9层 TLD-2 频率比 1;1.22;1.45 TLD-3 质量比/(%) 1.5;4;6 20层 TLD-3、
TLD-4频率比 1;1.15;1.46 质量比/(%) 1;1.5;2 输入幅值/(m/s2) 0.8;1;1.2 TLD-3、
TLD-4非线性 频率比 0.89;1;1.16;1.46 质量比/(%) 0.5;1;1.5;2 输入幅值/(m/s2) 1;1.2;1.5;1.6;1.8 -
[1] Ueda T, Nakagaki R, Koshida K. Suppression of wind-induced vibration by dynamic dampers in tower-like structures [J]. Journal of Wind Engineering & Industrial Aerodynamics, 1992, 43(1/2/3): 1907 − 1918. [2] 楼梦麟, 韩博宇. 高层建筑环境振动TLD控制研究[J]. 工程力学, 2015, 32(增刊 1): 184 − 190. doi: 10.6052/j.issn.1000-4750.2014.05.S052Lou Menglin, Han Boyu. Research on TLD control to environmental vibration of high-rise buildings [J]. Engineering Mechanics, 2015, 32(Suppl 1): 184 − 190. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.05.S052 [3] 陈鑫, 李爱群, 徐庆阳, 等. 基于遗传算法的高耸结构环形TLD满意优化设计[J]. 工程力学, 2016, 33(6): 77 − 84. doi: 10.6052/j.issn.1000-4750.2014.10.0918Chen Xin, Li Aiqun, Xu Qingyang, et al. Satisfaction optimum design of ring-shape TLD control for high-rise structure using genetic algorithm [J]. Engineering Mechanics, 2016, 33(6): 77 − 84. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.10.0918 [4] 李春祥, 黄金枝, 刘艳霞, 等. 高层钢结构地震反应控制的MTLD系统优化设计[J]. 工程力学, 2000, 17(2): 119 − 128.Li Chunxiang, Huang Jinzhi, Liu Yanxia, et al. The optimum design of MTLD system for controlling the seismic responses of tall steel structures [J]. Engineering Mechanics, 2000, 17(2): 119 − 128. (in Chinese) [5] Banerji P, Murudi M, Shah A H, et al. Tuned liquid dampers for controlling earthquake response of structures [J]. Earthquake Engineering & Structural Dynamics, 2000, 29(5): 587 − 602. [6] Zhu F, Wang J T, Jin F, et al. Real-time hybrid simulation of the size effect of tuned liquid dampers [J]. Structural Control and Health Monitoring, 2017, 24: e1962. doi: 10.1002/stc.1962 [7] Malekghasemi H. Experimental and analytical investigations of rectangular tuned liquid dampers (TLDs) [D]. Canada: University of Toronto, 2011. [8] Wang J T, Gui Y, Zhu F, et al. Real-time hybrid simulation of multi-story structures installed with tuned liquid damper [J]. Structural Control & Health Monitoring, 2016, 23(7): 1015 − 1031. [9] 洪越, 唐贞云, 何涛, 等. 大尺寸非线性实时动力子结构试验实现[J]. 振动工程学报, 2017, 30(6): 913 − 920.Hong Yue, Tang Zhenyun, He Tao, et al. The implementation of nonlinear real-time dynamics substructurting for large scale specimen [J]. Journal of Vibration Engineering, 2017, 30(6): 913 − 920. (in Chinese) [10] Ohtori Y, Chirstenson R E, Spencer B F. Benchmark control problems for seismically excited nonlinear buildings [J]. Journal of Engineering Mechanics, 2004, 130(4): 366 − 385. doi: 10.1061/(ASCE)0733-9399(2004)130:4(366) [11] Zhu F, Wang J T, Jin F, et al. Real-time hybrid simulation of full-scale tuned liquid column dampers to control multi-order modal responses of structures [J]. Engineering Structures, 2017, 138: 74 − 90. doi: 10.1016/j.engstruct.2017.02.004 [12] Yao J T P. Concept of structural control [J]. Journal of the Structural Division, 1972, 98(7): 1567 − 1574. doi: 10.1061/JSDEAG.0003280 [13] Tang Z Y, Dong Y, Liu H, et al. Frequency domain analysis method of tuned liquid damper controlled multi-degree of freedoms system subject to earthquake excitation [J]. Journal of Building Engineering, 2022, 48: 103910. -