IN-PLANE BEARING CAPACITY OF HIGH-STRENGTH CONCRETE-FILLED STEERL TUBULAR ARCHES
-
摘要: 该文通过对6根不同强度的高强钢管和高强混凝土抛物线型拱肋试件进行了对称分级加载,探明了拱肋在均布荷载下的受力行为,研究了高强钢管混凝土拱的承载能力,并与有限元计算结果进行了比较,二者基本吻合。基于有限元模型参数分析,阐明了钢管和混凝土强度、矢跨比、长细比和含钢率对拱的平面内承载力的影响。结果表明:全跨竖向均布荷载下拱肋的极限承载力随着钢管和混凝土的强度、矢跨比、含钢率的增加而增加,而极限承载力随长细比的增大而减少;当钢管强度等级从Q460提升至Q690时,拱肋承载力提高19.4%~21.4%;矢跨比、长细比和含钢率为影响拱肋平面承载力的主要因素。Abstract: The symmetrical step loading was carried out on six high-strength concrete filled steel tabular (HS-CFST) parabolic arch specimens. The mechanical behavior of the arch rib under a uniform load was investigated, and the ultimate bearing capacity of HS-CFST were also obtained. The experimental results are compared with the FE results, showing a good agreement. Based on the parameter analysis of finite element model of the arch, the effects of the steel tube strength, of concrete strength, of rise-span ratio, of slenderness ratio and, of steel content on the in-plane bearing capacity were analyzed. The results show that the ultimate bearing capacity of the arch rib increases with the increase of the strength of the steel tube and concrete, and of rise-span ratio and steel content, but decreases with the increase of slenderness ratio. When the strength grade of the steel tube increases from Q460 to Q690, the bearing capacity of arch rib increases by 19.4%~21.4%. It is also found the rise-span ratio, slenderness ratio and steel content are the main factors affecting the in-plane bearing capacity of arch ribs.
-
表 1 高强钢-高强混凝土拱肋模型参数表
Table 1. HS-CFST arch rib model parameters
试件编号 截面/mm fy/MPa fcu/MPa 1-460-80 ϕ89×3.75 469 96 2-550-80 ϕ89×3.72 531 96 3-620-80 ϕ89×3.77 608 96 4-460-100 ϕ89×3.75 469 112 5-550-100 ϕ89×3.72 531 112 6-620-100 ϕ89×3.77 608 112 注:试件编号1-460-80中,460代表钢管强度,80代表混凝土强度;fy为钢管屈服强度;fcu为试验测得混凝土抗压强度。 表 2 试验实测承载力与有限元计算结果对比
Table 2. The experimental results are compared with the finite element results
编号 试验实测值/kN 有限元计算值/kN 误差/(%) 1-460-80 181.82 186.80 2.74 2-550-80 203.49 200.93 −1.23 3-620-80 211.56 217.23 2.68 4-460-100 191.51 192.02 0.27 5-550-100 211.84 206.07 −2.72 6-620-100 219.67 222.04 1.08 -
[1] 蔡绍怀. 我国钢管混凝土结构技术的最新发展[J]. 土木工程学报, 1999, 32(4): 16 − 26. doi: 10.3321/j.issn:1000-131X.1999.04.003Cai Shaohuai. Recent development of steel tube confined concrete structures in China [J]. China Civil Engineering Journal, 1999, 32(4): 16 − 26. (in Chinese) doi: 10.3321/j.issn:1000-131X.1999.04.003 [2] 韩林海. 钢管混凝土结构的特点及发展[J]. 工业建筑, 1998, 28(10): 1 − 5. doi: 10.3321/j.issn:1000-8993.1998.10.001Han Linhai. Characters and development of concrete-filled steel tubes [J]. Industrial Construction, 1998, 28(10): 1 − 5. (in Chinese) doi: 10.3321/j.issn:1000-8993.1998.10.001 [3] 陈宝春, 李莉. 超高强钢管混凝土研究综述[J]. 交通运输工程学报, 2020, 50(6): 1637 − 1671.Chen Baochun, Li Li. Review on ultra-high strength concrete filled steel tubes [J]. Journal of Traffic and Transportation Engineering, 2020, 50(6): 1637 − 1671. (in Chinese) [4] 陈宝春, 韦建刚. 我国钢管混凝土拱桥应用现状与展望[J]. 土木工程学报, 2017, 50(6): 50 − 61.Chen Baochun, Wei Jiangang. Application of concrete-filled steel tube arch bridges in China: current status and prospects [J]. China Civil Engineering Journal, 2017, 50(6): 50 − 61. (in Chinese) [5] 陈宝春, 陈友杰. 钢管混凝土肋拱面内受力全过程试验研究[J]. 工程力学, 2000, 17(2): 44 − 50. doi: 10.3969/j.issn.1000-4750.2000.02.007Chen Baochun, Chen Youjie. Experimental study on mechanic behaviors of concrete-filled steel tubular rib arch under in-plane loads [J]. Engineering Mechanics, 2000, 17(2): 44 − 50. (in Chinese) doi: 10.3969/j.issn.1000-4750.2000.02.007 [6] 韦建刚, 陈宝春, 林英. 钢管混凝土肋拱面内多点对称加载试验研究[C]. 中国黑龙江哈尔滨: 中国钢协钢-混凝土组合结构协会年会, 2001.Wei Jiangang, Chen Baochun, Lin Ying. Experimental study on concrete filled steel tubular arch under symmetric in-plane loads [C]. Harbin, Heilongjiang, China: China Steel Construction Society, 2001. (in Chinese) [7] 陈宝春, 韦建刚, 林英. 管拱面内两点非对称加载试验研究[J]. 土木工程学报, 2006, 39(1): 43 − 49. doi: 10.3321/j.issn:1000-131X.2006.01.009Chen Baochun, Wei Jiangang, Lin Ying. Experimental study on tubular arches under unsymmetrical two concentrically in-plane loads [J]. China Civil Engineering Journal, 2006, 39(1): 43 − 49. (in Chinese) doi: 10.3321/j.issn:1000-131X.2006.01.009 [8] 陈宝春, 韦建刚. 管拱面内五点对称加载试验及其承载力简化算法研究[J]. 工程力学, 2007, 24(6): 73 − 78. doi: 10.3969/j.issn.1000-4750.2007.06.013Chen Baochun, Wei Jiangang. Experiments for ultimate load-carrying capacity of tubular arches under five in-plane symmetrical concentrated loads and the simplified calculation method [J]. Engineering Mechanics, 2007, 24(6): 73 − 78. (in Chinese) doi: 10.3969/j.issn.1000-4750.2007.06.013 [9] 李晓辉. 钢管混凝土实肋拱面外稳定性能研究[D]. 福州: 福州大学, 2011.Li Xiaohui. Research on the out-of-plane stability of CFST solid rib arches [D]. Fuzhou: FuZhou University, 2011. (in Chinese) [10] 程晓龙. 钢管混凝土抛物线浅拱平面内稳定性能试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.Cheng Xiaolong. In-plane stability of parabolic concrete-filled steel tubular arches with low rise-span ratios [D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese) [11] Zheng J L, Wang J J. Concrete-filled steel tube arch bridges in China [J]. Engineering, 2018, 4: 143 − 155. doi: 10.1016/j.eng.2017.12.003 [12] 崔嵬. 高强度钢材钢构件的研究现状和应用简介[J]. 建筑结构, 2011, 45(8): 67 − 73.Cui Wei. Recent Research Advances and application of high strength steel structures [J]. Building Structure, 2011, 45(8): 67 − 73. (in Chinese) [13] Fan Z, Liu X M, Fan X W, et al. Design and research of large-span steel structure for the national stadium [J]. Journal of Building Structures, 2007, 28(2): 1 − 16. [14] Pocock G. High strength steel use in Australia, Japan and the US [J]. The Structural Engineer, 2006, 11: 27 − 30. [15] 施刚, 石永久, 王元清. 超高强度钢材钢结构的工程应用[J]. 建筑钢结构进展, 2008, 10(4): 32 − 38.Shi Gang, Shi Yongjiu, Wang Yuanqing. Engineering Application of Ultra-High Strength Steel Structures [J]. Progress in Steel Building Structures, 2008, 10(4): 32 − 38. (in Chinese) [16] 肖从真, 李建辉. C100高强混凝土框架-核心筒高层建筑结构抗震性能研究[J]. 建筑科学, 2021, 37(3): 1 − 7.Xiao Congzhen, Li Jianhui. Research on seismic performance of frame-core tube high-rise building structure with C100 high-strength concrete [J]. Building Science, 2021, 37(3): 1 − 7. (in Chinese) [17] 陈肇元. 高强混凝土在建筑工程中的应用[J]. 建筑结构, 1994, 9(1): 3 − 12.Chen Zhaoyuan. Application of high strength concrete in construction engineering [J]. Building Structure, 1994, 9(1): 3 − 12. (in Chinese) [18] 郑玲玲, 陈建伟. 圆钢管高强混凝土轴压短柱承载力有限元分析[J]. 世界地震工程, 2016, 32(3): 171 − 178.Zhen Lingling, Chen Jianwei. Finite-element analysis of axial bearing capacity of circular steel tube with high strength concrete [J]. World Earthquake Engineering, 2016, 32(3): 171 − 178. (in Chinese) -