留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温后GFRP筋与海砂混凝土界面黏结失效模拟

傅建校 周春恒 章子华

傅建校, 周春恒, 章子华. 高温后GFRP筋与海砂混凝土界面黏结失效模拟[J]. 工程力学, 2022, 39(S): 121-128. doi: 10.6052/j.issn.1000-4750.2021.05.S020
引用本文: 傅建校, 周春恒, 章子华. 高温后GFRP筋与海砂混凝土界面黏结失效模拟[J]. 工程力学, 2022, 39(S): 121-128. doi: 10.6052/j.issn.1000-4750.2021.05.S020
FU Jian-xiao, ZHOU Chun-heng, ZHANG Zi-hua. MODELLING OF INTERFACIAL DEBONDING MECHANISM BETWEEN GFRP BARS AND SEA SAND CONCRETE AFTER HIGH TEMPERATURE[J]. Engineering Mechanics, 2022, 39(S): 121-128. doi: 10.6052/j.issn.1000-4750.2021.05.S020
Citation: FU Jian-xiao, ZHOU Chun-heng, ZHANG Zi-hua. MODELLING OF INTERFACIAL DEBONDING MECHANISM BETWEEN GFRP BARS AND SEA SAND CONCRETE AFTER HIGH TEMPERATURE[J]. Engineering Mechanics, 2022, 39(S): 121-128. doi: 10.6052/j.issn.1000-4750.2021.05.S020

高温后GFRP筋与海砂混凝土界面黏结失效模拟

doi: 10.6052/j.issn.1000-4750.2021.05.S020
基金项目: 浙江省自然科学基金项目(LQ20E080003,LHY21E090002);宁波市自然科学基金项目(202003N4139)
详细信息
    作者简介:

    傅建校(1996−),男,浙江人,硕士生,从事FRP-混凝土结构研究(E-mail: 1061502745@qq.com)

    周春恒(1987−),男,广东人,讲师,博士,从事FRP-混凝土结构、钢-混凝土组合结构研究(E-mail: chzhou2014@hotmail.com)

    通讯作者:

    章子华(1984−),男,浙江人,教授,博士,硕导,从事FRP-混凝土结构、计算固体力学等方面研究(E-mail: zhangzihua@nbu.edu.cn)

  • 中图分类号: TU528

MODELLING OF INTERFACIAL DEBONDING MECHANISM BETWEEN GFRP BARS AND SEA SAND CONCRETE AFTER HIGH TEMPERATURE

  • 摘要: 海砂的应用有利于缓解建筑用河砂的短缺现状,在海砂混凝土结构中以玻璃纤维增强复合材料(GFRP)筋替代钢筋可解决钢筋锈蚀引起的结构耐久性问题。目前,高温后GFRP筋-海砂混凝土的界面黏结失效规律尚不明确,对其界面力学行为的研究可促进GFRP筋-海砂混凝土结构的推广应用。该文提出了一种新型黏结滑移本构模型(指数-双曲线模型),并对高温后GFRP筋与海砂混凝土的界面力学行为进行了研究。基于ABAQUS平台,通过经验公式考虑了高温对各相材料力学性能的影响,采用内聚力损伤模型和混凝土塑性损伤模型,实现了高温后GFRP筋与海砂混凝土界面黏结失效模拟,并通过拔出试验验证了模拟的准确性。结果表明:有限元模拟结果与试验结果吻合较好;高温后海砂混凝土损伤主要集中于界面黏结段靠近加载端部分,且随着温度的升高,混凝土所受应力逐渐减小;高温后海砂混凝土和普通混凝土与GFRP筋的界面黏结性基本相当;高温后界面极限黏结强度损失率略大于筋材强度损失率,且界面极限黏结强度损失率随着混凝土强度等级的提高而增大。
  • 图  1  拉拔试件有限元模型

    Figure  1.  The FE model

    图  2  试验黏结滑移曲线与模拟曲线对比结果

    Figure  2.  Comparison between experimental and simulated results

    图  3  不同工况下界面剪应力分布

    Figure  3.  Interfacial shear stress distribution under different working conditions

    图  4  三种荷载水平下的界面剪应力分布

    Figure  4.  Interfacial shear stress distribution under different loading conditions

    图  5  海砂混凝土损伤

    Figure  5.  Comparison of the SSC damage

    图  6  黏结段靠近加载端附近的混凝土应力分布

    Figure  6.  The SSC stress field near the loading end of the interfacial bonding section

    图  7  海砂、河砂混凝土黏结滑移模拟曲线

    Figure  7.  The bond-slip curves of SSC and river sand concrete

    图  8  不同高温作用后的黏结滑移模拟曲线

    Figure  8.  The bond-slip curves at different temperature

    图  9  不同混凝土强度黏结滑移模拟曲线

    Figure  9.  Simulated bond slip curves of different SSC strengths

    图  10  混凝土强度对高温后极限黏结强度损失率的影响

    Figure  10.  Effect of SSC strengths level on ultimate bond strength LR after high temperature

    表  1  数值模拟材料参数

    Table  1.   Numerical simulation of material parameters

    材料参数工况
    常温下高温200 ℃高温300 ℃
    海砂
    混凝土
    fc/MPa24.421.817.2
    E/GPa27.817.013.9
    μ0.20.20.2
    GFRP筋E1=E2/GPa16.616.114.5
    E3/GPa22.221.017.5
    μ120.30.30.3
    μ13=μ230.20.20.2
    G12=G13=G236.46.25.6
    界面层τu/MPa9.37.56.1
    su/mm2.11.721.2
    注:1、2、3分别代表材料的横向、切向和纵向;fc为抗压强度;E为弹性模量;μ为泊松比;G为剪切模量;τu为极限黏结强度;su为极限滑移量。
    下载: 导出CSV

    表  2  CDP模型参数

    Table  2.   Parameters of the CDP model

    膨胀角偏心率应力比形状系数黏度系数
    360.11.160.6670.0001
    下载: 导出CSV

    表  3  GFRP筋参数及力学性能

    Table  3.   Parameters and mechanical properties of GFRP

    直径/mm表面肋距/mm肋高/mm弹性模量/GPa抗拉强度/MPa
    12深肋10.601.0522.15853.61
    下载: 导出CSV

    表  4  各工况荷载水平

    Table  4.   Load level of each condition

    工况荷载P/kN45%P/kN56%P/kN94%P/kN
    常温21.089.4911.8019.81
    200 ℃17.017.659.5315.99
    300 ℃13.876.247.7713.04
    下载: 导出CSV
  • [1] 秦斌. 海水海砂混凝土基本力学性能研究[J]. 混凝土, 2019(2): 90 − 91.

    Qin Bin. Study on basic mechanical properties of seawater sand concrete [J]. Concrete, 2019(2): 90 − 91. (in Chinese)
    [2] 卢佳. 海水海砂混凝土单轴受压应力-应变关系研究[D]. 大连: 大连理工大学, 2020.

    Lu Jia. Study on stress-strain relationship of marine sand concrete under uniaxial compression [D]. Dalian: Dalian University of Technology, 2020. (in Chinese)
    [3] 刘伟, 谢友均, 董必钦. 海砂特性及海砂混凝土力学性能的研究[J]. 硅酸盐通报, 2014, 33(1): 15 − 22.

    Liu Wei, Xie Youjun, Dong Biqin. Study on characteristics of sea sand and mechanical properties of sea sand concrete [J]. Silicate bulletin, 2014, 33(1): 15 − 22. (in Chinese)
    [4] 李光辉. 高温后FRP筋力学性能影响因素研究[J]. 粉煤灰综合利用, 2021, 35(1): 52 − 56.

    Li Guanghui. Research on Influencing Factors of Mechanical Properties of FRP Bars after High Temperature [J]. Comprehensive utilization of fly ash, 2021, 35(1): 52 − 56. (in Chinese)
    [5] Li C, Gao D, Wang Y, et al. Effect of high temperature on the bond performance between basalt fiber reinforced polymer bars and concrete [J]. Construction and Building Materials, 2017, 141: 44 − 51. doi: 10.1016/j.conbuildmat.2017.02.125
    [6] 李趁趁, 王英来, 赵军等. 高温后FRP筋纵向拉伸性能[J]. 建筑材料学报, 2014, 17(6): 1076 − 1081. doi: 10.3969/j.issn.1007-9629.2014.06.024

    Li Chenchen, Wang Yinglai, Zhao Jun, et al. Longitudinal tensile properties of FRP bars after high temperature [J]. Journal of building materials, 2014, 17(6): 1076 − 1081. (in Chinese) doi: 10.3969/j.issn.1007-9629.2014.06.024
    [7] 过镇海, 时旭东. 钢筋混凝土的高温性能及其计算[M]. 北京: 清华大学出版社, 2003.

    Guo Zhenhai, Shi Xudon. High temperature performance of reinforced concrete and its calculation[M]. Beijing: Tsinghua University Press, 2003. (in Chinese)
    [8] 邵伟, 陈有亮, 周有成. 不同温度及不同加热时间作用后混凝土力学性能试验研究[J]. 防灾减灾工程学报, 2012, 32(2): 248 − 252.

    Shao Wei, Chen Youliang, Zhou Youcheng. Experimental study on the mechanical properties of concrete after different temperatures and different heating times [J]. Journal of Disaster Prevention and Mitigation Engineering, 2012, 32(2): 248 − 252. (in Chinese)
    [9] 唐瑞瑞, 谢福娣, 刘栋栋. 高温后钢筋与混凝土粘结性能研究[J]. 建筑结构, 2013, 43(增刊 1): 1475 − 1478.

    Tang Ruirui, Xie Fudi, Liu Dongdong. Research on the bond performance of steel bar and concrete after high temperature [J]. Building Structure, 2013, 43(Suppl 1): 1475 − 1478. (in Chinese)
    [10] 陈俊, 张白, 杨鸥. 微锈蚀钢筋混凝土高温后粘结锚固性能试验研究[J]. 工程力学, 2018, 35(10): 92 − 100. doi: 10.6052/j.issn.1000-4750.2017.06.0491

    Chen Jun, Zhang Bai, Yang Ou. Experimental study on bonding and anchoring performance of micro-corroded reinforced concrete after high temperature [J]. Engineering Mechanics, 2018, 35(10): 92 − 100. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.06.0491
    [11] 王英来. 高温后FRP筋拉伸性能及其与混凝土粘结性能试验研究[D]. 郑州: 郑州大学, 2013.

    Wang Yinlai. Experimental study on the tensile properties of FRP bars and their bonding properties with concrete after high temperature [D]. Zhengzhou: Zhengzhou University, 2013. (in Chinese)
    [12] 张海霞, 朱浮声, 王凤池. FRP筋与混凝土粘结滑移数值模拟[J]. 沈阳建筑大学学报(自然科学版), 2007(2): 231 − 234.

    Zhang Haixia, Zhu Fusheng, Wang Fengchi. Numerical simulation of bond-slip between FRP bars and concrete [J]. Journal of Shenyang Jianzhu University (Natural Science Edition), 2007(2): 231 − 234. (in Chinese)
    [13] 赵琳, 李建波, 付兵. 光面钢筋拉拔试验细观数值模拟研究[J]. 建筑科学与工程学报, 2013, 30(2): 104 − 108. doi: 10.3969/j.issn.1673-2049.2013.02.016

    Zhao Lin, Li Jianbo, Fu Bin. Numerical simulation study of smooth steel bar pull-out test [J]. Journal of Building Science and Engineering, 2013, 30(2): 104 − 108. (in Chinese) doi: 10.3969/j.issn.1673-2049.2013.02.016
    [14] Yan F, Lin Z. Bond behavior of GFRP bar-concrete interface: Damage evolution assessment and FE simulation implementations [J]. Composite Structures, 2016, 155: 63 − 76. doi: 10.1016/j.compstruct.2016.07.078
    [15] Cosenza E, Manfredi G, Realfonzo R. Behavior and modeling of bond of FRP rebars to concrete [J]. Journal of Composites for Construction, 1997, 1(2): 40 − 51. doi: 10.1061/(ASCE)1090-0268(1997)1:2(40)
    [16] 高丹盈, 朱海堂, 谢晶晶. 纤维增强塑料筋混凝土粘结滑移本构模型[J]. 工业建筑, 2003, 33(7): 41 − 43. doi: 10.3321/j.issn:1000-8993.2003.07.011

    Gao Danying, Zhu Haitang, Xie Jingjing. Bond-slip constitutive model of fiber reinforced plastic bar concrete [J]. Industrial Construction, 2003, 33(7): 41 − 43. (in Chinese) doi: 10.3321/j.issn:1000-8993.2003.07.011
    [17] Rossetti V A, Galeota D, Giammatteo M M. Local bond stress-slip relationships of glass fibre reinforced plastic bars embedded in concrete [J]. Materials and Structures, 1995, 28(6): 340 − 344. doi: 10.1007/BF02473149
    [18] Eligehausen R, Bertero V, Popov E. Local bond stress-slip relationships of deformed bars under generalized excitations: Tests and analytical model, Report No. 83/23 [R]. California, USA: University of California, Berkeley, 1983. https://elib.uni-stuttgart.de/bitstream/11682/8490/1/eli26.pdf
    [19] Malvar L J. Tensile and bond properties of GFRP reinforcing bars [J]. Materials Journal, 1995, 92(3): 276 − 285.
    [20] 袁鹏, 陈万祥, 郭志昆,等. BFRP筋-混凝土黏结性能研究综述[J]. 混凝土, 2021(4): 45 − 49.

    Yuan Peng, Chen Wanxiang, Guo Zhikun, et al. A review of research on bonding properties of BFRP reinforcement to concrete [J]. Concrete, 2021(4): 45 − 49. (in Chinese)
    [21] 谷泓学. FRP筋拉伸及与混凝土的粘结性能[D]. 郑州: 郑州大学, 2015.

    Gu Hongxue. FRP tendons tensile and bonding properties with concrete [D]. Zhengzhou: Zhengzhou University, 2015. (in Chinese)
    [22] 宋泽鹏, 陆春华, 宣广宇, 等. 螺纹GFRP筋与混凝土黏结性能试验与理论计算[J]. 建筑材料学报, 2021, 24(4): 887 − 894. doi: 10.3969/j.issn.1007-9629.2021.04.029

    Song Zepeng, Lu Chunhua, Xuan Guangyu, et al. Test and theoretical calculation of bonding performance between threaded GFRP reinforcement and concrete [J]. Journal of Building Materials, 2021, 24(4): 887 − 894. (in Chinese) doi: 10.3969/j.issn.1007-9629.2021.04.029
    [23] Rolland A, Argoul P, Benzarti K, et al. Analytical and numerical modeling of the bond behavior between FRP reinforcing bars and concrete [J]. Construction and Building Materials, 2020, 231: 117160. doi: 10.1016/j.conbuildmat.2019.117160
    [24] 陈宗平, 王心月, 陈宇良. 海砂海水混凝土力学性能试验研究[J]. 混凝土, 2020, 11: 1 − 7. doi: 10.3969/j.issn.1002-3550.2020.03.001

    Chen Zongping, Wang Xinyue, Chen Yuliang. Experimental study on mechanical properties of sea sand and seawater concrete [J]. Concrete, 2020, 11: 1 − 7. (in Chinese) doi: 10.3969/j.issn.1002-3550.2020.03.001
    [25] Rezazadeh M, Carvelli V, Veljkovic A. Modelling bond of GFRP rebar and concrete [J]. Construction and Building Materials, 2017, 153: 102 − 116. doi: 10.1016/j.conbuildmat.2017.07.092
    [26] Abaqus V. 6.14, Analysis user’s manual [EB]. http://wufengyun.com:888/v6.14/books/usb/default.htm. 2015.
    [27] Hamad R J A, Johari M A M, Haddad R H. Mechanical properties and bond characteristics of different fiber reinforced polymer rebars at elevated temperatures [J]. Construction and Building Materials, 2017, 142: 521 − 535. doi: 10.1016/j.conbuildmat.2017.03.113
    [28] 高丹盈, 李趁趁, 李士会, 等. GFRP筋与混凝土粘结滑移性能试验研究[J]. 工业建筑, 2009, 433: 112 − 117.

    Gao Danying, Li Chenchen, Li Shihui, et al. Experimental study on bond slip behavior between GFRP reinforcement and concrete [J]. Industrial building, 2009, 433: 112 − 117. (in Chinese)
    [29] 桂苗苗. 混凝土早期塑性收缩开裂的研究进展[J]. 材料导报, 2011, 25(21): 76 − 78.

    Gui Miaomiao. Research progress on early plastic shrinkage cracking of concrete [J]. Materials Guide, 2011, 25(21): 76 − 78. (in Chinese)
    [30] 杨倩. 高温后自然冷却的普通混凝土承压性能试验研究[D]. 南宁: 广西大学, 2018.

    Yang Qian. Experimental study on bearing capacity of ordinary concrete naturally cooled after high temperature [D]. Nanning: Guangxi University, 2018. (in Chinese)
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  25
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-30
  • 修回日期:  2022-01-13
  • 网络出版日期:  2022-02-23
  • 刊出日期:  2022-06-06

目录

    /

    返回文章
    返回