MODELLING OF INTERFACIAL DEBONDING MECHANISM BETWEEN GFRP BARS AND SEA SAND CONCRETE AFTER HIGH TEMPERATURE
-
摘要: 海砂的应用有利于缓解建筑用河砂的短缺现状,在海砂混凝土结构中以玻璃纤维增强复合材料(GFRP)筋替代钢筋可解决钢筋锈蚀引起的结构耐久性问题。目前,高温后GFRP筋-海砂混凝土的界面黏结失效规律尚不明确,对其界面力学行为的研究可促进GFRP筋-海砂混凝土结构的推广应用。该文提出了一种新型黏结滑移本构模型(指数-双曲线模型),并对高温后GFRP筋与海砂混凝土的界面力学行为进行了研究。基于ABAQUS平台,通过经验公式考虑了高温对各相材料力学性能的影响,采用内聚力损伤模型和混凝土塑性损伤模型,实现了高温后GFRP筋与海砂混凝土界面黏结失效模拟,并通过拔出试验验证了模拟的准确性。结果表明:有限元模拟结果与试验结果吻合较好;高温后海砂混凝土损伤主要集中于界面黏结段靠近加载端部分,且随着温度的升高,混凝土所受应力逐渐减小;高温后海砂混凝土和普通混凝土与GFRP筋的界面黏结性基本相当;高温后界面极限黏结强度损失率略大于筋材强度损失率,且界面极限黏结强度损失率随着混凝土强度等级的提高而增大。Abstract: The replacement of river sand with sea one can solve its shortage for construction, and the combination of glass fiber-reinforced polymer (GFRP) bars with sea sand concrete (SSC) can avoid the problem of structural durability caused by reinforcement corrosion. The interface debonding mechanism of the interfaces between GFRP bar and SSC after high temperature is still unclear. The studies on FRP-SSC bond behavior contribute to their development. A new analytical bond-slip model, named as exponential-hyperbolic model, is proposed to describe the interface behavior between GFRP bars and SSC after high temperature. Considering the high-temperature effect parameters determined by the empirical formula, this study develops a finite element model with the cohesive zone model (CZM) and concrete damaged plasticity (CDP) model to simulate the GFRP-SSC interface behavior after high temperature based on ABAQUS. The numerical results are verified by comparing them with the pull-out test data. Results show that the simulated results agree well with the experimental observations, the damage of SSC is mainly concentrated near the loading end of the interfacial bonding section after elevated temperature, the stress decline with increasing temperature, the interface bond behavior of GFRP-SSC is similar to that of GFRP-river sand concrete, the ultimate bond strength loss rate (LR) is slightly greater than the tensile strength LR of the GFRP bar, and the LR increases with improving concrete strength grade.
-
Key words:
- after high temperature /
- SSC /
- exponential-hyperbolic model /
- CZM /
- CDP model
-
表 1 数值模拟材料参数
Table 1. Numerical simulation of material parameters
材料 参数 工况 常温下 高温200 ℃ 高温300 ℃ 海砂
混凝土fc/MPa 24.4 21.8 17.2 E/GPa 27.8 17.0 13.9 μ 0.2 0.2 0.2 GFRP筋 E1=E2/GPa 16.6 16.1 14.5 E3/GPa 22.2 21.0 17.5 μ12 0.3 0.3 0.3 μ13=μ23 0.2 0.2 0.2 G12=G13=G23 6.4 6.2 5.6 界面层 τu/MPa 9.3 7.5 6.1 su/mm 2.1 1.72 1.2 注:1、2、3分别代表材料的横向、切向和纵向;fc为抗压强度;E为弹性模量;μ为泊松比;G为剪切模量;τu为极限黏结强度;su为极限滑移量。 表 2 CDP模型参数
Table 2. Parameters of the CDP model
膨胀角 偏心率 应力比 形状系数 黏度系数 36 0.1 1.16 0.667 0.0001 表 3 GFRP筋参数及力学性能
Table 3. Parameters and mechanical properties of GFRP
直径/mm 表面 肋距/mm 肋高/mm 弹性模量/GPa 抗拉强度/MPa 12 深肋 10.60 1.05 22.15 853.61 表 4 各工况荷载水平
Table 4. Load level of each condition
工况 荷载P/kN 45%P/kN 56%P/kN 94%P/kN 常温 21.08 9.49 11.80 19.81 200 ℃ 17.01 7.65 9.53 15.99 300 ℃ 13.87 6.24 7.77 13.04 -
[1] 秦斌. 海水海砂混凝土基本力学性能研究[J]. 混凝土, 2019(2): 90 − 91.Qin Bin. Study on basic mechanical properties of seawater sand concrete [J]. Concrete, 2019(2): 90 − 91. (in Chinese) [2] 卢佳. 海水海砂混凝土单轴受压应力-应变关系研究[D]. 大连: 大连理工大学, 2020.Lu Jia. Study on stress-strain relationship of marine sand concrete under uniaxial compression [D]. Dalian: Dalian University of Technology, 2020. (in Chinese) [3] 刘伟, 谢友均, 董必钦. 海砂特性及海砂混凝土力学性能的研究[J]. 硅酸盐通报, 2014, 33(1): 15 − 22.Liu Wei, Xie Youjun, Dong Biqin. Study on characteristics of sea sand and mechanical properties of sea sand concrete [J]. Silicate bulletin, 2014, 33(1): 15 − 22. (in Chinese) [4] 李光辉. 高温后FRP筋力学性能影响因素研究[J]. 粉煤灰综合利用, 2021, 35(1): 52 − 56.Li Guanghui. Research on Influencing Factors of Mechanical Properties of FRP Bars after High Temperature [J]. Comprehensive utilization of fly ash, 2021, 35(1): 52 − 56. (in Chinese) [5] Li C, Gao D, Wang Y, et al. Effect of high temperature on the bond performance between basalt fiber reinforced polymer bars and concrete [J]. Construction and Building Materials, 2017, 141: 44 − 51. doi: 10.1016/j.conbuildmat.2017.02.125 [6] 李趁趁, 王英来, 赵军等. 高温后FRP筋纵向拉伸性能[J]. 建筑材料学报, 2014, 17(6): 1076 − 1081. doi: 10.3969/j.issn.1007-9629.2014.06.024Li Chenchen, Wang Yinglai, Zhao Jun, et al. Longitudinal tensile properties of FRP bars after high temperature [J]. Journal of building materials, 2014, 17(6): 1076 − 1081. (in Chinese) doi: 10.3969/j.issn.1007-9629.2014.06.024 [7] 过镇海, 时旭东. 钢筋混凝土的高温性能及其计算[M]. 北京: 清华大学出版社, 2003.Guo Zhenhai, Shi Xudon. High temperature performance of reinforced concrete and its calculation[M]. Beijing: Tsinghua University Press, 2003. (in Chinese) [8] 邵伟, 陈有亮, 周有成. 不同温度及不同加热时间作用后混凝土力学性能试验研究[J]. 防灾减灾工程学报, 2012, 32(2): 248 − 252.Shao Wei, Chen Youliang, Zhou Youcheng. Experimental study on the mechanical properties of concrete after different temperatures and different heating times [J]. Journal of Disaster Prevention and Mitigation Engineering, 2012, 32(2): 248 − 252. (in Chinese) [9] 唐瑞瑞, 谢福娣, 刘栋栋. 高温后钢筋与混凝土粘结性能研究[J]. 建筑结构, 2013, 43(增刊 1): 1475 − 1478.Tang Ruirui, Xie Fudi, Liu Dongdong. Research on the bond performance of steel bar and concrete after high temperature [J]. Building Structure, 2013, 43(Suppl 1): 1475 − 1478. (in Chinese) [10] 陈俊, 张白, 杨鸥. 微锈蚀钢筋混凝土高温后粘结锚固性能试验研究[J]. 工程力学, 2018, 35(10): 92 − 100. doi: 10.6052/j.issn.1000-4750.2017.06.0491Chen Jun, Zhang Bai, Yang Ou. Experimental study on bonding and anchoring performance of micro-corroded reinforced concrete after high temperature [J]. Engineering Mechanics, 2018, 35(10): 92 − 100. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.06.0491 [11] 王英来. 高温后FRP筋拉伸性能及其与混凝土粘结性能试验研究[D]. 郑州: 郑州大学, 2013.Wang Yinlai. Experimental study on the tensile properties of FRP bars and their bonding properties with concrete after high temperature [D]. Zhengzhou: Zhengzhou University, 2013. (in Chinese) [12] 张海霞, 朱浮声, 王凤池. FRP筋与混凝土粘结滑移数值模拟[J]. 沈阳建筑大学学报(自然科学版), 2007(2): 231 − 234.Zhang Haixia, Zhu Fusheng, Wang Fengchi. Numerical simulation of bond-slip between FRP bars and concrete [J]. Journal of Shenyang Jianzhu University (Natural Science Edition), 2007(2): 231 − 234. (in Chinese) [13] 赵琳, 李建波, 付兵. 光面钢筋拉拔试验细观数值模拟研究[J]. 建筑科学与工程学报, 2013, 30(2): 104 − 108. doi: 10.3969/j.issn.1673-2049.2013.02.016Zhao Lin, Li Jianbo, Fu Bin. Numerical simulation study of smooth steel bar pull-out test [J]. Journal of Building Science and Engineering, 2013, 30(2): 104 − 108. (in Chinese) doi: 10.3969/j.issn.1673-2049.2013.02.016 [14] Yan F, Lin Z. Bond behavior of GFRP bar-concrete interface: Damage evolution assessment and FE simulation implementations [J]. Composite Structures, 2016, 155: 63 − 76. doi: 10.1016/j.compstruct.2016.07.078 [15] Cosenza E, Manfredi G, Realfonzo R. Behavior and modeling of bond of FRP rebars to concrete [J]. Journal of Composites for Construction, 1997, 1(2): 40 − 51. doi: 10.1061/(ASCE)1090-0268(1997)1:2(40) [16] 高丹盈, 朱海堂, 谢晶晶. 纤维增强塑料筋混凝土粘结滑移本构模型[J]. 工业建筑, 2003, 33(7): 41 − 43. doi: 10.3321/j.issn:1000-8993.2003.07.011Gao Danying, Zhu Haitang, Xie Jingjing. Bond-slip constitutive model of fiber reinforced plastic bar concrete [J]. Industrial Construction, 2003, 33(7): 41 − 43. (in Chinese) doi: 10.3321/j.issn:1000-8993.2003.07.011 [17] Rossetti V A, Galeota D, Giammatteo M M. Local bond stress-slip relationships of glass fibre reinforced plastic bars embedded in concrete [J]. Materials and Structures, 1995, 28(6): 340 − 344. doi: 10.1007/BF02473149 [18] Eligehausen R, Bertero V, Popov E. Local bond stress-slip relationships of deformed bars under generalized excitations: Tests and analytical model, Report No. 83/23 [R]. California, USA: University of California, Berkeley, 1983. https://elib.uni-stuttgart.de/bitstream/11682/8490/1/eli26.pdf [19] Malvar L J. Tensile and bond properties of GFRP reinforcing bars [J]. Materials Journal, 1995, 92(3): 276 − 285. [20] 袁鹏, 陈万祥, 郭志昆,等. BFRP筋-混凝土黏结性能研究综述[J]. 混凝土, 2021(4): 45 − 49.Yuan Peng, Chen Wanxiang, Guo Zhikun, et al. A review of research on bonding properties of BFRP reinforcement to concrete [J]. Concrete, 2021(4): 45 − 49. (in Chinese) [21] 谷泓学. FRP筋拉伸及与混凝土的粘结性能[D]. 郑州: 郑州大学, 2015.Gu Hongxue. FRP tendons tensile and bonding properties with concrete [D]. Zhengzhou: Zhengzhou University, 2015. (in Chinese) [22] 宋泽鹏, 陆春华, 宣广宇, 等. 螺纹GFRP筋与混凝土黏结性能试验与理论计算[J]. 建筑材料学报, 2021, 24(4): 887 − 894. doi: 10.3969/j.issn.1007-9629.2021.04.029Song Zepeng, Lu Chunhua, Xuan Guangyu, et al. Test and theoretical calculation of bonding performance between threaded GFRP reinforcement and concrete [J]. Journal of Building Materials, 2021, 24(4): 887 − 894. (in Chinese) doi: 10.3969/j.issn.1007-9629.2021.04.029 [23] Rolland A, Argoul P, Benzarti K, et al. Analytical and numerical modeling of the bond behavior between FRP reinforcing bars and concrete [J]. Construction and Building Materials, 2020, 231: 117160. doi: 10.1016/j.conbuildmat.2019.117160 [24] 陈宗平, 王心月, 陈宇良. 海砂海水混凝土力学性能试验研究[J]. 混凝土, 2020, 11: 1 − 7. doi: 10.3969/j.issn.1002-3550.2020.03.001Chen Zongping, Wang Xinyue, Chen Yuliang. Experimental study on mechanical properties of sea sand and seawater concrete [J]. Concrete, 2020, 11: 1 − 7. (in Chinese) doi: 10.3969/j.issn.1002-3550.2020.03.001 [25] Rezazadeh M, Carvelli V, Veljkovic A. Modelling bond of GFRP rebar and concrete [J]. Construction and Building Materials, 2017, 153: 102 − 116. doi: 10.1016/j.conbuildmat.2017.07.092 [26] Abaqus V. 6.14, Analysis user’s manual [EB]. http://wufengyun.com:888/v6.14/books/usb/default.htm. 2015. [27] Hamad R J A, Johari M A M, Haddad R H. Mechanical properties and bond characteristics of different fiber reinforced polymer rebars at elevated temperatures [J]. Construction and Building Materials, 2017, 142: 521 − 535. doi: 10.1016/j.conbuildmat.2017.03.113 [28] 高丹盈, 李趁趁, 李士会, 等. GFRP筋与混凝土粘结滑移性能试验研究[J]. 工业建筑, 2009, 433: 112 − 117.Gao Danying, Li Chenchen, Li Shihui, et al. Experimental study on bond slip behavior between GFRP reinforcement and concrete [J]. Industrial building, 2009, 433: 112 − 117. (in Chinese) [29] 桂苗苗. 混凝土早期塑性收缩开裂的研究进展[J]. 材料导报, 2011, 25(21): 76 − 78.Gui Miaomiao. Research progress on early plastic shrinkage cracking of concrete [J]. Materials Guide, 2011, 25(21): 76 − 78. (in Chinese) [30] 杨倩. 高温后自然冷却的普通混凝土承压性能试验研究[D]. 南宁: 广西大学, 2018.Yang Qian. Experimental study on bearing capacity of ordinary concrete naturally cooled after high temperature [D]. Nanning: Guangxi University, 2018. (in Chinese) -