留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

功能梯度石墨烯增强复合材料拱在脉冲荷载下的动力屈曲分析

陈碧静 黄永辉 杨智诚 刘爱荣

陈碧静, 黄永辉, 杨智诚, 刘爱荣. 功能梯度石墨烯增强复合材料拱在脉冲荷载下的动力屈曲分析[J]. 工程力学, 2022, 39(S): 370-376. doi: 10.6052/j.issn.1000-4750.2021.05.S024
引用本文: 陈碧静, 黄永辉, 杨智诚, 刘爱荣. 功能梯度石墨烯增强复合材料拱在脉冲荷载下的动力屈曲分析[J]. 工程力学, 2022, 39(S): 370-376. doi: 10.6052/j.issn.1000-4750.2021.05.S024
CHEN Bi-jing, HUANG Yong-hui, YANG Zhi-cheng, LIU Ai-rong. DYNAMIC BUCKLING OF FUNCTIONALLY GRADED GRAPHENE NANOPLATELETS REINFORCED COMPOSITE ARCHES UNDER PULSE LOAD[J]. Engineering Mechanics, 2022, 39(S): 370-376. doi: 10.6052/j.issn.1000-4750.2021.05.S024
Citation: CHEN Bi-jing, HUANG Yong-hui, YANG Zhi-cheng, LIU Ai-rong. DYNAMIC BUCKLING OF FUNCTIONALLY GRADED GRAPHENE NANOPLATELETS REINFORCED COMPOSITE ARCHES UNDER PULSE LOAD[J]. Engineering Mechanics, 2022, 39(S): 370-376. doi: 10.6052/j.issn.1000-4750.2021.05.S024

功能梯度石墨烯增强复合材料拱在脉冲荷载下的动力屈曲分析

doi: 10.6052/j.issn.1000-4750.2021.05.S024
基金项目: 国家自然科学基金面上项目(11972123,51878188);高等学校学科创新引智计划(111计划D21021)
详细信息
    作者简介:

    陈碧静(1997−),女,广东人,硕士生,主要从事桥梁工程研究(E-mail: 2111916076@e.gzhu.edu.cn)

    杨智诚(1996−),男,广东人,副教授,博士,主要从事桥梁工程研究(E-mail: zhicheng.yang@zhku.edu.cn)

    刘爱荣(1972−),女,山西人,教授,博士,主要从事桥梁工程研究(E-mail: liuar@gzhu.edu.cn)

    通讯作者:

    黄永辉(1982−),男,湖南人,副研究员,博士,主要从事桥梁工程研究(E-mail: huangyh@gzhu.edu.cn)

  • 中图分类号: TQ127.1+1;TB33

DYNAMIC BUCKLING OF FUNCTIONALLY GRADED GRAPHENE NANOPLATELETS REINFORCED COMPOSITE ARCHES UNDER PULSE LOAD

  • 摘要: 采用有限元方法分析了矩形脉冲荷载作用下功能梯度石墨烯增强复合材料拱的动态力学响应,提出了通过参考比较拱静态屈曲路径和拱动态位移响应峰值来判断拱动力屈曲荷载和临界时间的方法。在此基础上,通过参数研究,详细分析了 GPLs 分布模式、质量分数、形状尺寸及荷载持续时间对拱动态响应的影响。结果表明:很少掺量的 GPLs 即可显著提高拱的动力屈曲荷载,X 型 GPLs 分布模式对拱动力稳定性的增强效果最好,在其他参数不变的情况下,表面积越大且厚度越薄的 GPLs 的增强效果越明显。
  • 图  1  4类典型的GPLs分布模式

    Figure  1.  Four types of typical GPLs distribution patterns

    图  2  FG-GPLRC拱的几何形状、截面和荷载函数

    Figure  2.  Geometric shape, section and load function of FG-GPLRC arch

    图  3  FG-GPLRC拱的有限元模型

    Figure  3.  Finite element model of FG-GPLRC arch

    图  4  FG-X-GPLRC拱的静态屈曲路径

    Figure  4.  Static buckling path of FG-X-GPLRC arch

    图  5  FG-X-GPLRC拱的动态位移响应

    Figure  5.  Dynamic displacement response of FG-X-GPLRC arch

    图  6  荷载持时对FG-X-GPLRC拱动态位移响应的影响

    Figure  6.  Influence of load duration on dynamic displacement response of FG-X-GPLRC arch

    图  7  峰值位移与荷载持续时间的变化曲线

    Figure  7.  The curve of peak displacement and load duration

    图  8  脉冲荷载对FG-X-GPLRC拱动态位移响应的影响

    Figure  8.  Influence of impulse load on dynamic displacement response of FG-X-GPLRC arch

    图  9  峰值位移与荷载的变化曲线

    Figure  9.  The curve of peak displacement and load

    图  10  不同荷载持续时间下动力屈曲临界荷载与静力屈曲临界荷载比较

    Figure  10.  Comparison of dynamic buckling critical load and static buckling critical load under different load durations

    图  11  不同WGPL对拱临界屈曲荷载的影响

    Figure  11.  Influence of different WGPL on critical buckling load of arch

    图  12  WGPL对拱临界屈曲荷载的影响

    Figure  12.  Influence of WGPL on critical buckling load of arch

    图  13  GPLs几何形状对拱临界屈曲荷载的影响

    Figure  13.  Influence of GPLs geometry on critical buckling load of arch

    表  1  拱的无量纲动力屈曲临界荷载结果比较

    Table  1.   Comparison of dimensionless dynamic buckling critical load results of arches

    分布模式WGPL/(%)动力屈曲临界荷载
    本文文献[13]
    U-GPLRC0.10.38230.3812
    0.30.57600.5744
    0.50.76980.7676
    X-GPLRC0.10.42350.4232
    0.30.69790.6992
    0.50.97090.9748
    O-GPLRC0.10.34030.3384
    0.30.44790.4444
    0.50.55470.5499
    Pure epoxy0.00.28550.2846
    下载: 导出CSV
  • [1] 王伟斌, 杨文秀, 滕兆春. 多孔功能梯度材料Timoshenko梁的自由振动分析[J]. 计算力学学报, 2021, 38(5): 586 − 594. doi: 10.7511/jslx20200311001

    Wang Weibin, Yang Wenxiu, Teng Zhaochun. Free vibration analysis of porous functionally graded Timoshenko beams [J]. Chinese Journal of Computational Mechanics, 2021, 38(5): 586 − 594. (in Chinese) doi: 10.7511/jslx20200311001
    [2] 顾佳佳, 沈璐璐, 刘兴喜, 杨博. 石墨烯增强功能梯度多孔板条的弯曲响应[J]. 浙江理工大学学报(自然科学版), 2021, 45(4): 551 − 558.

    Gu Jiajia, Shen Lulu, Liu Xingxi, Yang Bo. Graphene enhances the bending response of functionally graded porous slats [J]. Journal of Zhejiang Sci-Tech University (Natural Sciences Edition), 2021, 45(4): 551 − 558. (in Chinese)
    [3] 周凤玺, 李世荣. 功能梯度材料矩形板的三维瞬态热弹性分析[J]. 工程力学, 2009, 26(8): 59 − 64.

    Zhou Fengxi, Li Shirong. Three-dimensional analysis for transient hermal responses of functionally graded rectangular plate [J]. Engineering Mechanics, 2009, 26(8): 59 − 64. (in Chinese)
    [4] 许杨健, 李现敏, 文献民. 不同变形状态下变物性梯度功能材料板瞬态热应力[J]. 工程力学, 2006, 23(3): 49 − 55, 9. doi: 10.3969/j.issn.1000-4750.2006.03.010

    Xu Yangjian, Li Xianmin, Wen Xianmin. Transient thermal stresses of functionally gradient material plate with temperaturedependent material properties under different deformation states [J]. Engineering Mechanics, 2006, 23(3): 49 − 55, 9. (in Chinese) doi: 10.3969/j.issn.1000-4750.2006.03.010
    [5] Lee C, Wei X, Kysar J W, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321(5887): 385 − 388. doi: 10.1126/science.1157996
    [6] Yang Z, Huang Y, Liu A, et al. Nonlinear in-plane buckling of fixed shallow functionally graded graphene reinforced composite arches subjected to mechanical and thermal loading [J]. Applied Mathematical Modelling, 2019, 70(6): 315 − 327.
    [7] Zhao Y, Liu Y, Shi T, et al. Study of mechanical properties and early-stage deformation properties of graphene-modified cement-based materials [J]. Construction and Building Materials, 2020, 257: 119498. doi: 10.1016/j.conbuildmat.2020.119498
    [8] Mirzaei M, Kiani Y. Isogeometric thermal buckling analysis of temperature dependent FG graphene reinforced laminated plates using NURBS formulation [J]. Composite Structures, 2017, 180: 606 − 616. doi: 10.1016/j.compstruct.2017.08.057
    [9] Mallon N J, Fey R H B, Nijmeijer H, Zhang G Q. Dynamic buckling of a shallow arch under shock loading considering the effects of the arch shape [J]. International Journal of Non-linear Mechanics, 2006, 41: 1057 − 1067. doi: 10.1016/j.ijnonlinmec.2006.10.017
    [10] 窦超, 郭彦林. 圆弧拱平面外弹性弯扭屈曲临界荷载分析[J]. 工程力学, 2012, 29(3): 83 − 89, 94.

    Dou Chao, Guo Yanlin. Critical load analysis of elastic flexural and torsional buckling of circular arch outside plane [J]. Engineering Mechanics, 2012, 29(3): 83 − 89, 94. (in Chinese)
    [11] Pi Y, Bradford M A, Tin-Loi F. Non-linear in-plane buckling of rotationally restrained shallow arches under a central concentrated load [J]. International Journal of Non-linear Mechanics, 2008, 43: 1 − 17. doi: 10.1016/j.ijnonlinmec.2007.03.013
    [12] Pi Y, Bradford M A. Multiple unstable equilibrium branches and non-linear dynamic buckling of shallow arches [J]. International Journal Non-linear Mechanics, 2014, 60: 33 − 45. doi: 10.1016/j.ijnonlinmec.2013.12.005
    [13] Yang Z, Liu A, Yang J, et al. Dynamic buckling of functionally graded graphene nanoplatelets reinforced composite shallow arches under a step central point load [J]. Journal of Sound and Vibration, 2020, 465: 115019. doi: 10.1016/j.jsv.2019.115019
    [14] Yang Z, Zhao S, Yang J, et al. In-plane and out-of-plane free vibrations of functionally graded composite arches with graphene reinforcements [J]. Mechanics of Advanced Materials and Structures, 2020, 28(19): 2046 − 2056.
    [15] Affdl J C H, Kardos J L. The Halpin‐Tsai equations: A review [J]. Polymer Engineering and Science, 1976, 16: 344 − 352. doi: 10.1002/pen.760160512
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  22
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-21
  • 修回日期:  2022-03-04
  • 网络出版日期:  2022-03-19
  • 刊出日期:  2022-06-06

目录

    /

    返回文章
    返回