DYNAMIC BUCKLING OF FUNCTIONALLY GRADED GRAPHENE NANOPLATELETS REINFORCED COMPOSITE ARCHES UNDER PULSE LOAD
-
摘要: 采用有限元方法分析了矩形脉冲荷载作用下功能梯度石墨烯增强复合材料拱的动态力学响应,提出了通过参考比较拱静态屈曲路径和拱动态位移响应峰值来判断拱动力屈曲荷载和临界时间的方法。在此基础上,通过参数研究,详细分析了 GPLs 分布模式、质量分数、形状尺寸及荷载持续时间对拱动态响应的影响。结果表明:很少掺量的 GPLs 即可显著提高拱的动力屈曲荷载,X 型 GPLs 分布模式对拱动力稳定性的增强效果最好,在其他参数不变的情况下,表面积越大且厚度越薄的 GPLs 的增强效果越明显。Abstract: By using finite element method, the dynamic response of functionally graded graphene nanoplatelets reinforced composite (FG-GPLRC) arches under radial rectangular pulse loading was analyzed. A method is proposed to obtain dynamic buckling load and critical load duration by comparing the static buckling path with the peak value of the dynamic displacement response. And then, the influence of graphene nanoplatelets (GPLs) distribution mode, of weight fraction, of geometric parameters, of geometry and dimensions, of load duration on the arch's dynamic mechanical behavior is studied through parametric analysis. It is found that: adding a small amount of GPLs as the reinforced composite can significantly improve the dynamic buckling load of the arch, and X- type GPLs distribution mode can achieve the most effective stiffness enhancement effect. With other parameters unchanged, the effect of the thinner and larger GPLs layer on the arch reinforcement of FG-GPLRC arch is more obvious.
-
Key words:
- graphene nanoplatelets /
- pulse load /
- finite element method /
- parametric analysis /
- dynamic buckling
-
表 1 拱的无量纲动力屈曲临界荷载结果比较
Table 1. Comparison of dimensionless dynamic buckling critical load results of arches
分布模式 WGPL/(%) 动力屈曲临界荷载 本文 文献[13] U-GPLRC 0.1 0.3823 0.3812 0.3 0.5760 0.5744 0.5 0.7698 0.7676 X-GPLRC 0.1 0.4235 0.4232 0.3 0.6979 0.6992 0.5 0.9709 0.9748 O-GPLRC 0.1 0.3403 0.3384 0.3 0.4479 0.4444 0.5 0.5547 0.5499 Pure epoxy 0.0 0.2855 0.2846 -
[1] 王伟斌, 杨文秀, 滕兆春. 多孔功能梯度材料Timoshenko梁的自由振动分析[J]. 计算力学学报, 2021, 38(5): 586 − 594. doi: 10.7511/jslx20200311001Wang Weibin, Yang Wenxiu, Teng Zhaochun. Free vibration analysis of porous functionally graded Timoshenko beams [J]. Chinese Journal of Computational Mechanics, 2021, 38(5): 586 − 594. (in Chinese) doi: 10.7511/jslx20200311001 [2] 顾佳佳, 沈璐璐, 刘兴喜, 杨博. 石墨烯增强功能梯度多孔板条的弯曲响应[J]. 浙江理工大学学报(自然科学版), 2021, 45(4): 551 − 558.Gu Jiajia, Shen Lulu, Liu Xingxi, Yang Bo. Graphene enhances the bending response of functionally graded porous slats [J]. Journal of Zhejiang Sci-Tech University (Natural Sciences Edition), 2021, 45(4): 551 − 558. (in Chinese) [3] 周凤玺, 李世荣. 功能梯度材料矩形板的三维瞬态热弹性分析[J]. 工程力学, 2009, 26(8): 59 − 64.Zhou Fengxi, Li Shirong. Three-dimensional analysis for transient hermal responses of functionally graded rectangular plate [J]. Engineering Mechanics, 2009, 26(8): 59 − 64. (in Chinese) [4] 许杨健, 李现敏, 文献民. 不同变形状态下变物性梯度功能材料板瞬态热应力[J]. 工程力学, 2006, 23(3): 49 − 55, 9. doi: 10.3969/j.issn.1000-4750.2006.03.010Xu Yangjian, Li Xianmin, Wen Xianmin. Transient thermal stresses of functionally gradient material plate with temperaturedependent material properties under different deformation states [J]. Engineering Mechanics, 2006, 23(3): 49 − 55, 9. (in Chinese) doi: 10.3969/j.issn.1000-4750.2006.03.010 [5] Lee C, Wei X, Kysar J W, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321(5887): 385 − 388. doi: 10.1126/science.1157996 [6] Yang Z, Huang Y, Liu A, et al. Nonlinear in-plane buckling of fixed shallow functionally graded graphene reinforced composite arches subjected to mechanical and thermal loading [J]. Applied Mathematical Modelling, 2019, 70(6): 315 − 327. [7] Zhao Y, Liu Y, Shi T, et al. Study of mechanical properties and early-stage deformation properties of graphene-modified cement-based materials [J]. Construction and Building Materials, 2020, 257: 119498. doi: 10.1016/j.conbuildmat.2020.119498 [8] Mirzaei M, Kiani Y. Isogeometric thermal buckling analysis of temperature dependent FG graphene reinforced laminated plates using NURBS formulation [J]. Composite Structures, 2017, 180: 606 − 616. doi: 10.1016/j.compstruct.2017.08.057 [9] Mallon N J, Fey R H B, Nijmeijer H, Zhang G Q. Dynamic buckling of a shallow arch under shock loading considering the effects of the arch shape [J]. International Journal of Non-linear Mechanics, 2006, 41: 1057 − 1067. doi: 10.1016/j.ijnonlinmec.2006.10.017 [10] 窦超, 郭彦林. 圆弧拱平面外弹性弯扭屈曲临界荷载分析[J]. 工程力学, 2012, 29(3): 83 − 89, 94.Dou Chao, Guo Yanlin. Critical load analysis of elastic flexural and torsional buckling of circular arch outside plane [J]. Engineering Mechanics, 2012, 29(3): 83 − 89, 94. (in Chinese) [11] Pi Y, Bradford M A, Tin-Loi F. Non-linear in-plane buckling of rotationally restrained shallow arches under a central concentrated load [J]. International Journal of Non-linear Mechanics, 2008, 43: 1 − 17. doi: 10.1016/j.ijnonlinmec.2007.03.013 [12] Pi Y, Bradford M A. Multiple unstable equilibrium branches and non-linear dynamic buckling of shallow arches [J]. International Journal Non-linear Mechanics, 2014, 60: 33 − 45. doi: 10.1016/j.ijnonlinmec.2013.12.005 [13] Yang Z, Liu A, Yang J, et al. Dynamic buckling of functionally graded graphene nanoplatelets reinforced composite shallow arches under a step central point load [J]. Journal of Sound and Vibration, 2020, 465: 115019. doi: 10.1016/j.jsv.2019.115019 [14] Yang Z, Zhao S, Yang J, et al. In-plane and out-of-plane free vibrations of functionally graded composite arches with graphene reinforcements [J]. Mechanics of Advanced Materials and Structures, 2020, 28(19): 2046 − 2056. [15] Affdl J C H, Kardos J L. The Halpin‐Tsai equations: A review [J]. Polymer Engineering and Science, 1976, 16: 344 − 352. doi: 10.1002/pen.760160512 -