留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杭州地铁4号线盾构下穿电力隧道直接切桩沉降分析

张建华 王宏伟 陈培新 徐峰 吴军

张建华, 王宏伟, 陈培新, 徐峰, 吴军. 杭州地铁4号线盾构下穿电力隧道直接切桩沉降分析[J]. 工程力学, 2022, 39(S): 144-152. doi: 10.6052/j.issn.1000-4750.2021.05.S029
引用本文: 张建华, 王宏伟, 陈培新, 徐峰, 吴军. 杭州地铁4号线盾构下穿电力隧道直接切桩沉降分析[J]. 工程力学, 2022, 39(S): 144-152. doi: 10.6052/j.issn.1000-4750.2021.05.S029
ZHANG Jian-hua, WANG Hong-wei, CHEN Pei-xin, XU Feng, WU Jun. SURFACE SETTLEMENT ANALYSIS OF SHIELD PASSING THROUGH POWER TUNNEL AND DIRECTLY CUTTING PILE FOUNDATION OF HANGZHOU METRO LINE 4[J]. Engineering Mechanics, 2022, 39(S): 144-152. doi: 10.6052/j.issn.1000-4750.2021.05.S029
Citation: ZHANG Jian-hua, WANG Hong-wei, CHEN Pei-xin, XU Feng, WU Jun. SURFACE SETTLEMENT ANALYSIS OF SHIELD PASSING THROUGH POWER TUNNEL AND DIRECTLY CUTTING PILE FOUNDATION OF HANGZHOU METRO LINE 4[J]. Engineering Mechanics, 2022, 39(S): 144-152. doi: 10.6052/j.issn.1000-4750.2021.05.S029

杭州地铁4号线盾构下穿电力隧道直接切桩沉降分析

doi: 10.6052/j.issn.1000-4750.2021.05.S029
基金项目: 盾构隧道穿越复杂施工环境的影响及控制研究(STEC/KJB/XMGL/0090)
详细信息
    作者简介:

    张建华(1996−),男,广东汕头人,硕士生,主要从事盾构下穿工程研究(E-mail: 2111916043@e.gzhu.edu.cn)

    陈培新(1985−),男,安徽阜阳人,高工,硕士,主要从事隧道工程施工研究(E-mail: 147017504@qq.com)

    徐 峰(1987−),男,上海人,高工,本科,主要从事隧道工程施工研究(E-mail: 287348637@qq.com)

    吴 军(1991−),男,安徽安庆人,助理工程师,本科,主要从事隧道工程施工研究(E-mail: 972499259@qq.com)

    通讯作者:

    王宏伟(1979−),男,黑龙江哈尔滨人,副教授,博士,主要从事钢管混凝土结构及爆炸力学下结构动力学响应的研究(E-mail: wanghw@dhu.edu.cn)

  • 中图分类号: U231+.3;TU994

SURFACE SETTLEMENT ANALYSIS OF SHIELD PASSING THROUGH POWER TUNNEL AND DIRECTLY CUTTING PILE FOUNDATION OF HANGZHOU METRO LINE 4

  • 摘要: 以杭州地铁4号线盾构下穿电力隧道切削桩基工程项目为背景,结合三维数值模拟和实测沉降数据进行分析,研究盾构下穿电力隧道切削桩基对地表的沉降影响,并以掌子面推进力、同步注浆压力为施工参数进行数值分析。数值模拟数据表明:切桩期间地表的沉降量大且沉降速率快,沉降量及沉降速率均随监测点离隧道轴线距离的增大而减小,由于电力隧道结构的特殊性,切桩过程中产生的沉降量占总沉降量比重较小。掌子面推进力的变化对切桩前地表的隆起影响较为显著,对切桩时地表产生的沉降量影响相对较小;注浆压力的变化对切桩前地表的隆起和切桩时产生的沉降量影响均不够显著。通过比较实测数据与模拟数据发现,实测数据中由于切桩产生的地表沉降有一定的滞后性。根据数值模拟结果,建议在施工过程中当盾构机与桩基础的距离大于6 m时,适当增加掌子面推力以减小地表的最终沉降;距离小于6 m时,恢复掌子面推力为1倍静止土压力,以减小桩身水平位移确保切桩工作顺利进行。
  • 图  1  左线切削穿越2根Φ600 mm减沉桩示意图

    Figure  1.  The left line directly cutting 2 Φ600 mm reduction piles schematic

    图  2  三维模型示意图

    Figure  2.  Schematic diagram of 3D model

    图  3  现场监测点示意图

    Figure  3.  Schematic diagram of field monitoring points

    图  4  地表沉降监测点取点平面

    Figure  4.  Layout of surface monitoring points

    图  5  地表监测点实测数据图

    Figure  5.  Field data of surface monitoring point

    图  6  地表监测点模拟数据图

    Figure  6.  Simulation data of surface monitoring points

    图  7  监测点DBC44模拟实测对比图

    Figure  7.  Simulation and measured comparison of DBC44 monitoring point

    图  8  监测点DBC45模拟实测对比图

    Figure  8.  Simulation and measured comparison of DBC45 monitoring point

    图  9  监测点DBC46模拟实测对比图

    Figure  9.  Simulation and measured comparison of DBC46 monitoring point

    图  10  监测点DBC47模拟实测对比图

    Figure  10.  Simulation and measured comparison of DBC47 monitoring point

    图  11  地表最终沉降曲线图(注浆压力0.30 MPa)

    Figure  11.  Surface final settlement curve (grouting pressure is 0.30 MPa)

    图  12  地表最终沉降曲线图(注浆压力0.32 MPa)

    Figure  12.  Surface final settlement curve (grouting pressure is 0.32 MPa)

    图  13  地表最终沉降曲线图(注浆压力0.34 MPa)

    Figure  13.  Surface final settlement curve (grouting pressure is 0.34 MPa)

    图  14  DBC44全过程沉降图(注浆压力0.30 MPa)

    Figure  14.  Settlement curve of DBC44 (grouting pressure is 0.30 MPa)

    图  15  地表最终沉降曲线图(推力1.0E0)

    Figure  15.  (thrust of palm face is 1.0E0) Surface final settlement curve

    图  16  地表最终沉降曲线图(推力1.15E0)

    Figure  16.  (thrust of palm face is 1.15E0) Surface final settlement curve

    图  17  地表最终沉降曲线图(推力1.3E0)

    Figure  17.  (thrust of palm face is 1.3E0) Surface final settlement curve

    图  18  DBC44全过程沉降图(推力1.0E0)

    Figure  18.  Settlement curve of DBC44 (thrust of palm face is 1.0E0)

    图  19  右线掘进完成时地表变形图

    Figure  19.  Surface deformation diagram after completion of right line excavation

    图  20  左线掘进完成时地表变形图

    Figure  20.  Surface deformation diagram after completion of left line excavation

    图  21  各工况下桩身水平位移图

    Figure  21.  Horizontal displacement diagram of pile under various working conditions

    表  1  土层物理性质参数表

    Table  1.   Physical properties of the soil

    名称静止侧压力系数K0重度/(kN/m3)层厚/m压缩模量/MPa泊松比粘聚力/kPa摩擦角/(°)
    1-2素填土0.5018.61.251.800.3310.012.0
    2-2粉质粘土0.5618.91.611.800.3617.014.5
    5-2黏土0.4519.55.404.920.3135.016.0
    5-3砂质粘土夹粉土0.5318.88.202.370.3517.019.0
    7-1黏土0.4519.78.705.850.3140.015.0
    7-2粉质黏土0.4520.07.844.380.3130.018.0
    下载: 导出CSV
  • [1] 陈海丰, 袁大军, 王飞, 等. 盾构直接切削大直径桩基的掘削参数研究[J]. 土木工程学报, 2016, 49(10): 103 − 109, 128.

    Chen Haifeng, Yuan Dajun, Wang Fei, et al. Study on shield cutting parameters when cutting big diameter piles [J]. China Civil Engineering Journal, 2016, 49(10): 103 − 109, 128. (in Chinese)
    [2] 袁大军, 王飞, 董朝文, 等. 盾构切削大直径钢筋混凝土桩基新型刀具研究[J]. 中国公路学报, 2016, 29(3): 89 − 97. doi: 10.3969/j.issn.1001-7372.2016.03.012

    Yuan Dajun, Wang Fei, Dong Chaowen, et al. Study on new-style cutter for shield cutting large- diameter reinforced concrete pile [J]. China Journal of Highway and Transport, 2016, 29(3): 89 − 97. (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.03.012
    [3] 唐仁, 林本海, 梁鹏. 盾构下穿住宅楼直接切桩的安全性研究[J]. 地下空间与工程学报, 2019, 15(增刊 2): 878 − 883.

    Tang Ren, Lin Benhai, Liang Peng. Study on the safety of shield passing through the residential building and directly cutting pile foundation [J]. Chinese Journal of Underground Space and Engineering, 2019, 15(Suppl 2): 878 − 883. (in Chinese)
    [4] 白东锋, 荆玉明, 薛普恒. 盾构切桩后桩基对管片作用力确定及控制措施[J]. 隧道建设, 2020, 40(增刊 1): 122 − 127.

    Bai Dongfeng, Jing Yuming, Xue Puheng. Force determine and control measures of pile foundation on shield tunnel segments after cutting pile [J]. Tunnel Construction, 2020, 40(Suppl 1): 122 − 127. (in Chinese)
    [5] 张立亚, 张宏梅, 邓喀中, 等. 地铁盾构隧道切桩穿越建筑群的沉降影响分析[J]. 测绘通报, 2016(8): 81 − 85, 117.

    Zhang Liya, Zhang Hongmei, Deng Kazhong, et al. Settlement impact analysis of metro shield tunnel crossing building group with cutting stakes [J]. Bulletin of Surveying and Mapping, 2016(8): 81 − 85, 117. (in Chinese)
    [6] 王禹椋, 李继超, 廖少明. 深圳地铁9号线盾构切削群桩数值模拟与实测分析[J]. 隧道建设, 2017, 37(2): 192 − 199. doi: 10.3973/j.issn.1672-741X.2017.02.011

    Wang Yuliang, Li Jichao, Liao Shaoming. Numerical simulation and measured data analysis of pile group cutting by shield: a case study of running tunnel on line No. 9 of Shenzhen Metro [J]. Tunnel Construction, 2017, 37(2): 192 − 199. (in Chinese) doi: 10.3973/j.issn.1672-741X.2017.02.011
    [7] 周济民. 盾构区间隧道下穿高架桥桩基群施工技术与环境影响预测[J]. 现代隧道技术, 2016, 53(1): 165 − 172.

    Zhou Jimin. Construction technology and environmental impact prediction of pile foundation group under viaduct of shield tunnel [J]. Modern Tunnel Technology, 2016, 53(1): 165 − 172. (in Chinese)
    [8] 刘新军, 田俊峰, 叶万军, 等. 盾构下穿施工对软流塑地层及既有隧道变形影响分析[J]. 防灾减灾学报, 2020, 36(4): 18 − 25.

    Liu Xinjun, Tian Junfeng, Ye Wanjun, et al. Effect of shield underpass construction on aspartic plastic stratum and existing tunnel deformation [J]. Journal of Disaster Prevention and Reduction, 2020, 36(4): 18 − 25. (in Chinese)
    [9] 彭华, 杨志蔚, 曹全, 等. 盾构下穿铁路碎石道床沉降规律及施工参数控制[J]. 工程力学, 2019, 36(增刊): 222 − 228. doi: 10.6052/j.issn.1000-4750.2018.04.S044

    Peng Hua, Yang Zhiwei, Cao Quan, et al. The settlement law of railway ballast beds traversed by a shield tunnel and the control of shield construction parameters [J]. Engineering Mechanics, 2019, 36(Suppl): 222 − 228. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.04.S044
    [10] 房明, 周翠英, 刘镇. 交叉隧道盾构施工参数与交叉角度对既有隧道的沉降影响研究[J]. 工程力学, 2011, 28(12): 133 − 138.

    Fang Ming, Zhou Cuiying, Liu Zhen. Influence of construction parameters and cross angle on existing tunnel settlement during undercrossing shield tunneling construction [J]. Engineering Mechanics, 2011, 28(12): 133 − 138. (in Chinese)
    [11] Peck R. B. Deep excavation and tunneling in soft ground [J]. Proc. int. conf. on Smfe, 1969: 225 − 290.
    [12] 杨晓东, 刘飞. 土压平衡盾构参数对隧道地表沉降影响研究[J]. 人民长江, 2021, 52(3): 162 − 166.

    Yang Xiaodong, Liu Fei. Study on influence of soil pressure balance shield parameters on tunnel surface settlement [J]. Yangtze River, 2021, 52(3): 162 − 166. (in Chinese)
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  77
  • HTML全文浏览量:  29
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-29
  • 修回日期:  2022-02-16
  • 网络出版日期:  2022-03-01
  • 刊出日期:  2022-06-06

目录

    /

    返回文章
    返回