SURFACE SETTLEMENT ANALYSIS OF SHIELD PASSING THROUGH POWER TUNNEL AND DIRECTLY CUTTING PILE FOUNDATION OF HANGZHOU METRO LINE 4
-
摘要: 以杭州地铁4号线盾构下穿电力隧道切削桩基工程项目为背景,结合三维数值模拟和实测沉降数据进行分析,研究盾构下穿电力隧道切削桩基对地表的沉降影响,并以掌子面推进力、同步注浆压力为施工参数进行数值分析。数值模拟数据表明:切桩期间地表的沉降量大且沉降速率快,沉降量及沉降速率均随监测点离隧道轴线距离的增大而减小,由于电力隧道结构的特殊性,切桩过程中产生的沉降量占总沉降量比重较小。掌子面推进力的变化对切桩前地表的隆起影响较为显著,对切桩时地表产生的沉降量影响相对较小;注浆压力的变化对切桩前地表的隆起和切桩时产生的沉降量影响均不够显著。通过比较实测数据与模拟数据发现,实测数据中由于切桩产生的地表沉降有一定的滞后性。根据数值模拟结果,建议在施工过程中当盾构机与桩基础的距离大于6 m时,适当增加掌子面推力以减小地表的最终沉降;距离小于6 m时,恢复掌子面推力为1倍静止土压力,以减小桩身水平位移确保切桩工作顺利进行。Abstract: As the background of Hangzhou Metro Line 4 shield passing through a power tunnel, the influence of the shield directly cutting pile foundation on surface settlement is studied through three-dimensional numerical simulation. The thrust force of palm face and synchronous grouting pressure are used as tunneling parameters for numerical simulation, and field monitoring data is obtained and analyzed. The simulation data confirm that: the surface settlement is large and the settlement rate is fast during the pile cutting period, and both the settlement amount and the settlement rate decrease with the increase of the distance between the monitoring point and the tunnel axis. Due to the particularity of the structure of the power tunnel, the settlement generated in pile cutting process accounts for a small proportion of the total settlement. The thrust force of the palm face has a great influence on the heaves of the surface before pile cutting and less on the surface settlement amount during pile cutting. The grouting pressure has little effect on the heaves of the surface before pile cutting and the surface settlement amount during pile cutting. By comparing the field data with the simulated data, it is found that the surface settlement caused by pile cutting has a certain lag in the field data. According to the numerical simulation results, it is suggested that when the distance between shield machine and pile foundation is greater than 6 m in the construction process, the thrust of the palm face should be appropriately increased to reduce the final settlement of the surface. When the distance is less than 6 m, the thrust should be adjusted back to 100% static earth pressure to reduce the horizontal displacement of the pile and to ensure the smooth operation of pile cutting.
-
Key words:
- shield method /
- cut pile foundation /
- settlement /
- numerical simulation /
- thrust force of the palm face
-
表 1 土层物理性质参数表
Table 1. Physical properties of the soil
名称 静止侧压力系数K0 重度/(kN/m3) 层厚/m 压缩模量/MPa 泊松比 粘聚力/kPa 摩擦角/(°) 1-2素填土 0.50 18.6 1.25 1.80 0.33 10.0 12.0 2-2粉质粘土 0.56 18.9 1.61 1.80 0.36 17.0 14.5 5-2黏土 0.45 19.5 5.40 4.92 0.31 35.0 16.0 5-3砂质粘土夹粉土 0.53 18.8 8.20 2.37 0.35 17.0 19.0 7-1黏土 0.45 19.7 8.70 5.85 0.31 40.0 15.0 7-2粉质黏土 0.45 20.0 7.84 4.38 0.31 30.0 18.0 -
[1] 陈海丰, 袁大军, 王飞, 等. 盾构直接切削大直径桩基的掘削参数研究[J]. 土木工程学报, 2016, 49(10): 103 − 109, 128.Chen Haifeng, Yuan Dajun, Wang Fei, et al. Study on shield cutting parameters when cutting big diameter piles [J]. China Civil Engineering Journal, 2016, 49(10): 103 − 109, 128. (in Chinese) [2] 袁大军, 王飞, 董朝文, 等. 盾构切削大直径钢筋混凝土桩基新型刀具研究[J]. 中国公路学报, 2016, 29(3): 89 − 97. doi: 10.3969/j.issn.1001-7372.2016.03.012Yuan Dajun, Wang Fei, Dong Chaowen, et al. Study on new-style cutter for shield cutting large- diameter reinforced concrete pile [J]. China Journal of Highway and Transport, 2016, 29(3): 89 − 97. (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.03.012 [3] 唐仁, 林本海, 梁鹏. 盾构下穿住宅楼直接切桩的安全性研究[J]. 地下空间与工程学报, 2019, 15(增刊 2): 878 − 883.Tang Ren, Lin Benhai, Liang Peng. Study on the safety of shield passing through the residential building and directly cutting pile foundation [J]. Chinese Journal of Underground Space and Engineering, 2019, 15(Suppl 2): 878 − 883. (in Chinese) [4] 白东锋, 荆玉明, 薛普恒. 盾构切桩后桩基对管片作用力确定及控制措施[J]. 隧道建设, 2020, 40(增刊 1): 122 − 127.Bai Dongfeng, Jing Yuming, Xue Puheng. Force determine and control measures of pile foundation on shield tunnel segments after cutting pile [J]. Tunnel Construction, 2020, 40(Suppl 1): 122 − 127. (in Chinese) [5] 张立亚, 张宏梅, 邓喀中, 等. 地铁盾构隧道切桩穿越建筑群的沉降影响分析[J]. 测绘通报, 2016(8): 81 − 85, 117.Zhang Liya, Zhang Hongmei, Deng Kazhong, et al. Settlement impact analysis of metro shield tunnel crossing building group with cutting stakes [J]. Bulletin of Surveying and Mapping, 2016(8): 81 − 85, 117. (in Chinese) [6] 王禹椋, 李继超, 廖少明. 深圳地铁9号线盾构切削群桩数值模拟与实测分析[J]. 隧道建设, 2017, 37(2): 192 − 199. doi: 10.3973/j.issn.1672-741X.2017.02.011Wang Yuliang, Li Jichao, Liao Shaoming. Numerical simulation and measured data analysis of pile group cutting by shield: a case study of running tunnel on line No. 9 of Shenzhen Metro [J]. Tunnel Construction, 2017, 37(2): 192 − 199. (in Chinese) doi: 10.3973/j.issn.1672-741X.2017.02.011 [7] 周济民. 盾构区间隧道下穿高架桥桩基群施工技术与环境影响预测[J]. 现代隧道技术, 2016, 53(1): 165 − 172.Zhou Jimin. Construction technology and environmental impact prediction of pile foundation group under viaduct of shield tunnel [J]. Modern Tunnel Technology, 2016, 53(1): 165 − 172. (in Chinese) [8] 刘新军, 田俊峰, 叶万军, 等. 盾构下穿施工对软流塑地层及既有隧道变形影响分析[J]. 防灾减灾学报, 2020, 36(4): 18 − 25.Liu Xinjun, Tian Junfeng, Ye Wanjun, et al. Effect of shield underpass construction on aspartic plastic stratum and existing tunnel deformation [J]. Journal of Disaster Prevention and Reduction, 2020, 36(4): 18 − 25. (in Chinese) [9] 彭华, 杨志蔚, 曹全, 等. 盾构下穿铁路碎石道床沉降规律及施工参数控制[J]. 工程力学, 2019, 36(增刊): 222 − 228. doi: 10.6052/j.issn.1000-4750.2018.04.S044Peng Hua, Yang Zhiwei, Cao Quan, et al. The settlement law of railway ballast beds traversed by a shield tunnel and the control of shield construction parameters [J]. Engineering Mechanics, 2019, 36(Suppl): 222 − 228. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.04.S044 [10] 房明, 周翠英, 刘镇. 交叉隧道盾构施工参数与交叉角度对既有隧道的沉降影响研究[J]. 工程力学, 2011, 28(12): 133 − 138.Fang Ming, Zhou Cuiying, Liu Zhen. Influence of construction parameters and cross angle on existing tunnel settlement during undercrossing shield tunneling construction [J]. Engineering Mechanics, 2011, 28(12): 133 − 138. (in Chinese) [11] Peck R. B. Deep excavation and tunneling in soft ground [J]. Proc. int. conf. on Smfe, 1969: 225 − 290. [12] 杨晓东, 刘飞. 土压平衡盾构参数对隧道地表沉降影响研究[J]. 人民长江, 2021, 52(3): 162 − 166.Yang Xiaodong, Liu Fei. Study on influence of soil pressure balance shield parameters on tunnel surface settlement [J]. Yangtze River, 2021, 52(3): 162 − 166. (in Chinese) -