MECHANICAL MODEL OF HIGH STRENGTH BOLT SHEAR CONNECTOR OF FABRICATED STEEL-CONCRETE COMPOSITE BEAM
-
摘要: 剪力连接件是装配式钢-混凝土组合梁的关键部件,其荷载-滑移曲线大致分为四个阶段,即滑移前摩擦阶段、滑移阶段、滑移后弹性阶段、滑移后塑性阶段。该文通过弹性地基梁理论和材料力学平面应力理论,建立了高强螺栓剪力连接件的受力模型,对前三个阶段的受力行为进行了理论解析分析,并通过多组试验数据对理论结果进行了验证,二者吻合良好。研究表明:剪力连接件在整个受力过程同时受弯矩、剪力和轴力的耦合作用,该文提出的力学模型能较为准确的模拟螺栓弹性阶段的极限值,能初步解释螺栓在弹性段抗剪性能随预拉力变化的原因;并得出了螺栓弹性段弯矩对其屈服极限影响有限的结论。Abstract: The shear connector is the key component of a fabricated steel-concrete composite beam. Its load slip curve is roughly divided into four stages, namely, friction stage before slip, slip stage, elastic stage after slip and plastic stage after slip. In this study, through the elastic foundation beam theory and the plane stress theory of material mechanics, the stress model of a high-strength bolt shear connector is established, the stress behavior of the first three stages is theoretically analyzed, and the theoretical results are verified by several groups of experimental data, and the results are in a good agreement. The research shows that: in the stress process of the shear connector, the shear surface of the screw is subjected to the coupling action of the bending moment, of the shearing force and, of the axial force. The mechanical model proposed can accurately simulate the limit value of the bolt in the elastic stage, and can preliminarily explain the reason why the shear performance of the bolt changes with the pretension in the elastic section. It is concluded that the bending moment of the elastic section of the bolt has little effect on its yield limit.
-
Key words:
- bridge engineering /
- mechanical model /
- push out test /
- beam on elastic foundation /
- composite beam /
- shear connector
-
表 1 几何模型梁端参数表
Table 1. Beam end parameters of geometric model
梁端 梁端类型 O端边界条件 A端边界条件 待求参数 O端
A端固结
定向支座yO=0
θO=0θA=0
QA=0QO
MO表 2 力学模型验证试验材料参数表
Table 2. Material parameters of mechanical model verification test
试件 螺栓等级 Fu/MPa Fcu/MPa L/mm D/mm Fc/MPa S1(Liu等[5]) G8.8 640 384 100 20 47.0 S2(Liu等[5]) G8.8 640 384 100 20 47.0 S3(Kown等[2]) A325 644 386 127 22 24.5 S4(M20) G8.8 695 417 100 20(螺纹) 60.0 S5(M22) G8.8 680 414 100 22(螺纹) 60.0 注:Fu为螺栓的抗拉屈服;Fcu为螺栓的受剪屈服强度;L为螺栓的计算长度;D为螺栓的直径;Fc为混凝土板的立方体抗压强度 。其中:S1组对应Liu等[5]中的SP4组;S2组对应Liu等[5]中的SP2组;S3组对Kown等 [2]中的HTFGB-05ST组。 表 3 预拉力变化对组合梁高强螺栓螺栓弹性极限承载能力影响表
Table 3. Influence of pretension change on elastic ultimate bearing capacity of high strength bolts of composite beams
-
[1] 侯和涛, 臧增运. 新型全装配钢-混凝土组合梁连接件推出试验研究[J]. 工程力学, 2020, 37(2): 201 − 210. doi: 10.6052/j.issn.1000-4750.2019.03.0146Hou Hetao, Zang Zengyun. Push-out tests of shear connectors for new fully assembled steel-concrete composite beams [J]. Engineering Mechanics, 2020, 37(2): 201 − 210. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.03.0146 [2] Kwon G, Engelhardt M D, Klinger R E. Behaviour of post-installed shear connectors under static and fatigue loading [J]. Journal of Constructional Steel Research, 2010, 66(4): 532 − 541. doi: 10.1016/j.jcsr.2009.09.012 [3] Kwon G, Engelhardt M D, Klinger R E. Experimental behavior of bridge beams retrofittedwith postinstalled shear connectors [J]. Journal of Bridge Engineering, 2011, 16(4): 536 − 545. doi: 10.1061/(ASCE)BE.1943-5592.0000184 [4] Pavlović M, Marković Z, Veljković M, et al. Bolted shear connectors vs headed studs behaviour in push-out tests [J]. Journal of Constructional Steel Research, 2013, 88: 134 − 149. doi: 10.1016/j.jcsr.2013.05.003 [5] Liu X, Bradford M A, Lee M S S. Behavior of high-strength friction-grip bolted shear connectors in sustainable composite beams [J]. Journal of Structural Engineering, 2014, 141(6): 04014149. doi: 10.1061/(ASCE)ST.1943-541X.0001090 [6] Liu X, Bradford M A, Chen Q, et al. Finite element modelling of steel-concrete composite beams with high-strength friction-grip bolt shear connectors [J]. Finite Elements in Analysis and Design, 2016, 108: 54 − 65. doi: 10.1016/j.finel.2015.09.004 [7] Liu X, Bradford M A, Ataei A. Flexural performance of innovative sustainable composite steel-concrete beams [J]. Engineering Structures, 2017, 130: 282 − 296. doi: 10.1016/j.engstruct.2016.10.009 [8] 邱盛源, 樊健生, 聂建国, 等. 角钢连接件抗剪刚度试验及理论研究[J]. 中国公路学报, 2021, 34(3): 136 − 146. doi: 10.3969/j.issn.1001-7372.2021.03.009Qiu Shengyuan, Fan Jiansheng, Nie Jianguo, et al. Experimental and theoretical study on the shear stiffness of angle shear connectors [J]. China Journal of Highway and Transport, 2021, 34(3): 136 − 146. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.03.009 [9] 安然, 王有志, 周磊, 等. 剪力钉连接件拉剪复合作用试验及计算模型[J]. 长安大学学报: 自然科学版, 2020, 40(3): 42 − 52.An Ran, Wang Youzhi, Zhou Lei, et al. Experiment and analytical model of shear stud connectors under combined tension and shear force [J]. Journal of Chang an University: Natural Science Edition, 2020, 40(3): 42 − 52. (in Chinese) [10] Zhang Y, Chen B, Liu A, et al. Experimental study on shear behavior of high strength bolt connection in prefabricated steel-concrete composite beam [J]. Composites Part B: Engineering, 2019, 159: 481 − 489. doi: 10.1016/j.compositesb.2018.10.007 [11] Zhang Y, Liu A, Chen B, et al. Experimental and numerical study of shear connection in composite beams of steel and steel-fibre reinforced concrete [J]. Engineering Structures, 2020, 215: 110707. doi: 10.1016/j.engstruct.2020.110707 [12] 朱合华. 地下建筑结构[M]. 北京: 中国建筑工业出版社, 2015.Zhu Hehua. Underground structure [M]. Beijng: China building industry press, 2015. (in Chinese) [13] Saari W K, Hajjar J F, Schultz A E, et al. Behavior of shear studs in steel frames with reinforced concrete infill walls [J]. Journal of Constructional Steel Research, 2004, 60(10): 1453 − 1480. doi: 10.1016/j.jcsr.2004.03.003 [14] 孙训方. 材料力学(Ⅰ)[M]. 北京: 高等教育出版社, 2009.Sun Xunfang. Mechanics of materials (Ⅰ) [M]. Beijng: Higher Education Press, 2009. (in Chinese) -