留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

装配式钢-混凝土组合梁高强螺栓剪力连接件力学模型

张凡 陈炳聪 刘爱荣 周危 刘国蔚

张凡, 陈炳聪, 刘爱荣, 周危, 刘国蔚. 装配式钢-混凝土组合梁高强螺栓剪力连接件力学模型[J]. 工程力学, 2022, 39(S): 173-179. doi: 10.6052/j.issn.1000-4750.2021.05.S033
引用本文: 张凡, 陈炳聪, 刘爱荣, 周危, 刘国蔚. 装配式钢-混凝土组合梁高强螺栓剪力连接件力学模型[J]. 工程力学, 2022, 39(S): 173-179. doi: 10.6052/j.issn.1000-4750.2021.05.S033
ZHANG Fan, CHEN Bing-cong, LIU Ai-rong, ZHOU Wei, LIU Guo-wei. MECHANICAL MODEL OF HIGH STRENGTH BOLT SHEAR CONNECTOR OF FABRICATED STEEL-CONCRETE COMPOSITE BEAM[J]. Engineering Mechanics, 2022, 39(S): 173-179. doi: 10.6052/j.issn.1000-4750.2021.05.S033
Citation: ZHANG Fan, CHEN Bing-cong, LIU Ai-rong, ZHOU Wei, LIU Guo-wei. MECHANICAL MODEL OF HIGH STRENGTH BOLT SHEAR CONNECTOR OF FABRICATED STEEL-CONCRETE COMPOSITE BEAM[J]. Engineering Mechanics, 2022, 39(S): 173-179. doi: 10.6052/j.issn.1000-4750.2021.05.S033

装配式钢-混凝土组合梁高强螺栓剪力连接件力学模型

doi: 10.6052/j.issn.1000-4750.2021.05.S033
基金项目: 国家自然科学基金项目(51278134); 高等学校学科创新引智计划项目(111计划D21021);广州市科技计划项目(20212200004);中国工程院战略咨询重点项目(2021-XZ-37)
详细信息
    作者简介:

    张 凡(1996−),男,河南人,硕士生,主要从事装配式组合梁研究(E-mail: 1462476990@qq.com)

    刘爱荣(1972−),女,山西人,教授,博士,主要从事拱方面的研究(E-mail: liuar@gzhu.edu.cn)

    周 危(1995−),男,湖北人,硕士,主要从事装配式组合梁研究(E-mail: zhouweiljk@163.com)

    刘国蔚(2002−),男,广东人,本科生,主要从事装配式组合梁研究(E-mail: 909821893@qq.com)

    通讯作者:

    陈炳聪(1980−),男,广东人,高级试验师,博士生,主要从事装配式组合梁研究(E-mail: bc_chen@gzhu.edu.cn)

  • 中图分类号: TU398+.9

MECHANICAL MODEL OF HIGH STRENGTH BOLT SHEAR CONNECTOR OF FABRICATED STEEL-CONCRETE COMPOSITE BEAM

  • 摘要: 剪力连接件是装配式钢-混凝土组合梁的关键部件,其荷载-滑移曲线大致分为四个阶段,即滑移前摩擦阶段、滑移阶段、滑移后弹性阶段、滑移后塑性阶段。该文通过弹性地基梁理论和材料力学平面应力理论,建立了高强螺栓剪力连接件的受力模型,对前三个阶段的受力行为进行了理论解析分析,并通过多组试验数据对理论结果进行了验证,二者吻合良好。研究表明:剪力连接件在整个受力过程同时受弯矩、剪力和轴力的耦合作用,该文提出的力学模型能较为准确的模拟螺栓弹性阶段的极限值,能初步解释螺栓在弹性段抗剪性能随预拉力变化的原因;并得出了螺栓弹性段弯矩对其屈服极限影响有限的结论。
  • 图  1  推出试验

    Figure  1.  Push out test

    图  2  推出结构立体图

    Figure  2.  Stereogram of push-out structure

    图  3  螺杆与螺杆半刨面图对比图

    Figure  3.  Comparison of screw and screw semi planing

    图  4  组合梁推出试验受力分布图

    Figure  4.  Stress distribution of composite beam push out test

    图  5  高强螺栓荷载-滑移曲线

    Figure  5.  Load-slip curve of high strength bolt

    图  6  C点处高强螺栓应力云图

    Figure  6.  Stress nephogram of high strength bolt at point C

    图  7  弹性地基梁几何模型图

    Figure  7.  Geometric model of elastic foundation beam

    图  8  高强螺栓拉伸试验的应力-位移曲线

    Figure  8.  Stress-displacement curve of tensile test of high strength bolt

    图  9  推出试验ABAQUS 1/4模型

    Figure  9.  1/4 model of push-out test in ABAQUS

    图  10  M20高强螺栓推出试验荷载-滑移曲线

    Figure  10.  Load-slip curve of M20 high strength bolt push-out test

    图  11  高强螺栓推出试验荷载-滑移曲线

    Figure  11.  Load-slip curve of high strength bolt push-out test

    表  1  几何模型梁端参数表

    Table  1.   Beam end parameters of geometric model

    梁端梁端类型O端边界条件A端边界条件待求参数
    O
    A
    固结
    定向支座
    yO=0
    θO=0
    θA=0
    QA=0
    QO
    MO
    下载: 导出CSV

    表  2  力学模型验证试验材料参数表

    Table  2.   Material parameters of mechanical model verification test

    试件螺栓等级Fu/MPaFcu/MPaL/mmD/mmFc/MPa
    S1(Liu等[5])G8.86403841002047.0
    S2(Liu等[5])G8.86403841002047.0
    S3(Kown等[2])A3256443861272224.5
    S4(M20)G8.869541710020(螺纹)60.0
    S5(M22)G8.868041410022(螺纹)60.0
    注:Fu为螺栓的抗拉屈服;Fcu为螺栓的受剪屈服强度;L为螺栓的计算长度;D为螺栓的直径;Fc为混凝土板的立方体抗压强度。其中:S1组对应Liu等[5]中的SP4组;S2组对应Liu等[5]中的SP2组;S3组对Kown等 [2]中的HTFGB-05ST组。
    下载: 导出CSV

    表  3  预拉力变化对组合梁高强螺栓螺栓弹性极限承载能力影响表

    Table  3.   Influence of pretension change on elastic ultimate bearing capacity of high strength bolts of composite beams

    编号预拉力
    FP/kN
    剪力值
    QO/kN
    弯矩产生的应力σM/MPa正应力σx/MPa剪应力στ/MPa主应力
    σ/MPa
    总承载
    能力/kN
    S1(Liu等[5])701204.3236384512.2157.1
    S2(Liu等[5])1451204.3473334641.4171.7
    S3(Kown等[2])1751295.7466323644.0216.5
    S4(M20)140582.0606251695.0125.2
    S5(M22)160993.9553307690.0167.4
    注:表中弹性阶段内的滑移量皆取6 mm。
    下载: 导出CSV

    表  4  力学模型推导结果与试验结果对比表

    Table  4.   Comparison between mechanical model derivation results and original test results

    编号力学模型结果/kN原试验结果/kN比值
    S1(Liu等[5])157.0150~1531.05~1.03
    S2(Liu等[5])171.7165~1681.04~1.02
    S3(Kown等[2])216.5212~2171.02~0.99
    S4(M20)125.2121~1261.03~0.99
    S5(M22)167.4165~1711.01~0.98
    下载: 导出CSV
  • [1] 侯和涛, 臧增运. 新型全装配钢-混凝土组合梁连接件推出试验研究[J]. 工程力学, 2020, 37(2): 201 − 210. doi: 10.6052/j.issn.1000-4750.2019.03.0146

    Hou Hetao, Zang Zengyun. Push-out tests of shear connectors for new fully assembled steel-concrete composite beams [J]. Engineering Mechanics, 2020, 37(2): 201 − 210. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.03.0146
    [2] Kwon G, Engelhardt M D, Klinger R E. Behaviour of post-installed shear connectors under static and fatigue loading [J]. Journal of Constructional Steel Research, 2010, 66(4): 532 − 541. doi: 10.1016/j.jcsr.2009.09.012
    [3] Kwon G, Engelhardt M D, Klinger R E. Experimental behavior of bridge beams retrofittedwith postinstalled shear connectors [J]. Journal of Bridge Engineering, 2011, 16(4): 536 − 545. doi: 10.1061/(ASCE)BE.1943-5592.0000184
    [4] Pavlović M, Marković Z, Veljković M, et al. Bolted shear connectors vs headed studs behaviour in push-out tests [J]. Journal of Constructional Steel Research, 2013, 88: 134 − 149. doi: 10.1016/j.jcsr.2013.05.003
    [5] Liu X, Bradford M A, Lee M S S. Behavior of high-strength friction-grip bolted shear connectors in sustainable composite beams [J]. Journal of Structural Engineering, 2014, 141(6): 04014149. doi: 10.1061/(ASCE)ST.1943-541X.0001090
    [6] Liu X, Bradford M A, Chen Q, et al. Finite element modelling of steel-concrete composite beams with high-strength friction-grip bolt shear connectors [J]. Finite Elements in Analysis and Design, 2016, 108: 54 − 65. doi: 10.1016/j.finel.2015.09.004
    [7] Liu X, Bradford M A, Ataei A. Flexural performance of innovative sustainable composite steel-concrete beams [J]. Engineering Structures, 2017, 130: 282 − 296. doi: 10.1016/j.engstruct.2016.10.009
    [8] 邱盛源, 樊健生, 聂建国, 等. 角钢连接件抗剪刚度试验及理论研究[J]. 中国公路学报, 2021, 34(3): 136 − 146. doi: 10.3969/j.issn.1001-7372.2021.03.009

    Qiu Shengyuan, Fan Jiansheng, Nie Jianguo, et al. Experimental and theoretical study on the shear stiffness of angle shear connectors [J]. China Journal of Highway and Transport, 2021, 34(3): 136 − 146. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.03.009
    [9] 安然, 王有志, 周磊, 等. 剪力钉连接件拉剪复合作用试验及计算模型[J]. 长安大学学报: 自然科学版, 2020, 40(3): 42 − 52.

    An Ran, Wang Youzhi, Zhou Lei, et al. Experiment and analytical model of shear stud connectors under combined tension and shear force [J]. Journal of Chang an University: Natural Science Edition, 2020, 40(3): 42 − 52. (in Chinese)
    [10] Zhang Y, Chen B, Liu A, et al. Experimental study on shear behavior of high strength bolt connection in prefabricated steel-concrete composite beam [J]. Composites Part B: Engineering, 2019, 159: 481 − 489. doi: 10.1016/j.compositesb.2018.10.007
    [11] Zhang Y, Liu A, Chen B, et al. Experimental and numerical study of shear connection in composite beams of steel and steel-fibre reinforced concrete [J]. Engineering Structures, 2020, 215: 110707. doi: 10.1016/j.engstruct.2020.110707
    [12] 朱合华. 地下建筑结构[M]. 北京: 中国建筑工业出版社, 2015.

    Zhu Hehua. Underground structure [M]. Beijng: China building industry press, 2015. (in Chinese)
    [13] Saari W K, Hajjar J F, Schultz A E, et al. Behavior of shear studs in steel frames with reinforced concrete infill walls [J]. Journal of Constructional Steel Research, 2004, 60(10): 1453 − 1480. doi: 10.1016/j.jcsr.2004.03.003
    [14] 孙训方. 材料力学(Ⅰ)[M]. 北京: 高等教育出版社, 2009.

    Sun Xunfang. Mechanics of materials (Ⅰ) [M]. Beijng: Higher Education Press, 2009. (in Chinese)
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  16
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-29
  • 修回日期:  2022-03-30
  • 网络出版日期:  2022-05-10
  • 刊出日期:  2022-06-06

目录

    /

    返回文章
    返回