留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

台风浪-潮-流相关性对桥梁群桩基础波流力的影响

尚黛梦 魏凯 钟茜 秦顺全

尚黛梦, 魏凯, 钟茜, 秦顺全. 台风浪-潮-流相关性对桥梁群桩基础波流力的影响[J]. 工程力学, 2022, 39(S): 187-194. doi: 10.6052/j.issn.1000-4750.2021.05.S036
引用本文: 尚黛梦, 魏凯, 钟茜, 秦顺全. 台风浪-潮-流相关性对桥梁群桩基础波流力的影响[J]. 工程力学, 2022, 39(S): 187-194. doi: 10.6052/j.issn.1000-4750.2021.05.S036
SHANG Dai-meng, WEI Kai, ZHONG Xi, QIN Shun-quan. INFLUENCE OF WAVE-SURGE-CURRENT CORRELATION ON WAVE AND CURRENT LOADS TO ELEVATED PILE CAP FOUNDATION OF BRIDGE UNDER TYPHOONS[J]. Engineering Mechanics, 2022, 39(S): 187-194. doi: 10.6052/j.issn.1000-4750.2021.05.S036
Citation: SHANG Dai-meng, WEI Kai, ZHONG Xi, QIN Shun-quan. INFLUENCE OF WAVE-SURGE-CURRENT CORRELATION ON WAVE AND CURRENT LOADS TO ELEVATED PILE CAP FOUNDATION OF BRIDGE UNDER TYPHOONS[J]. Engineering Mechanics, 2022, 39(S): 187-194. doi: 10.6052/j.issn.1000-4750.2021.05.S036

台风浪-潮-流相关性对桥梁群桩基础波流力的影响

doi: 10.6052/j.issn.1000-4750.2021.05.S036
基金项目: 国家重点研发计划项目(2021YFB1600300);国家自然科学基金项目(51978578)
详细信息
    作者简介:

    尚黛梦(1998−),女,广州人,硕士生,主要从事跨海桥梁防灾减灾研究(E-mail: shangdm@my.swjtu.edu.cn)

    钟 茜(1998−),女,重庆人,硕士生,主要从事跨海桥梁防灾减灾研究(E-mail: ZhongXi99@hotmail.com)

    秦顺全(1963−),男,四川人,教授,硕士,院士,主要从事桥梁工程设计与施工研究(E-mail: qinshq@cae.cn)

    通讯作者:

    魏 凯(1984−),男,山东人,副教授,博士,主要从事跨海桥梁防灾减灾研究(E-mail: kaiwei@home.swjtu.edu.cn)

  • 中图分类号: U443.15

INFLUENCE OF WAVE-SURGE-CURRENT CORRELATION ON WAVE AND CURRENT LOADS TO ELEVATED PILE CAP FOUNDATION OF BRIDGE UNDER TYPHOONS

  • 摘要: 台风是我国主要的灾害性天气系统之一,台风作用下桥址区会产生巨浪、强潮、急流,导致桥梁群桩基础承受巨大的波流力。极端环境下的海洋环境参数浪、潮、流会相互作用,而现有的设计规范中较少考虑浪-潮-流的相关性,从而导致设计的保守。为研究台风浪-潮-流相关性对桥梁群桩基础波流力的影响,该文基于SWAN+ADICIRC耦合模型获取49条台风作用下浪-潮-流数据,采用三维嵌套Frank Copula模型得到浪-潮-流三维联合分布,建立100年重现期环境等值面,并采用势流理论与莫里森方程进行波流力计算。对不考虑浪-潮-流相关性与考虑浪-潮-流相关性计算得到的波流力进行对比分析。研究表明:考虑浪-潮-流相关性比不考虑浪-潮-流相关性计算得到的群桩基础波流力减小17.40%;波流力与有效波高、谱峰周期和流速呈现明显的正相关性,而对潮位的变化并不敏感;在考虑了浪、潮、流相关性后,水平剪力和基底弯矩对应的环境参数组合不再一致。
  • 图  1  桥梁群桩基础模型

    Figure  1.  Elevated pile cap foundation model

    图  2  台风路径图

    Figure  2.  Typhoon tracks

    图  3  计算域网格方案1和方案2与测站“HTD”和“MJ”

    Figure  3.  Model domain grids scheme one and scheme two, and the observation stations“HTD”and“MJ”

    图  4  “HTD”潮位实测值与网格方案1、方案2模拟值对比

    Figure  4.  Comparison of the measured surge and the simulated surges with scheme one and scheme two grids of "HTD"

    图  5  “MJ” 潮位实测值与网格方案1、方案2模拟值对比

    Figure  5.  Comparison of the measured surge and the simulated surges with scheme one and scheme two grids of "MJ"

    图  6  有效波高实测值与模拟值对比

    Figure  6.  The comparison of calculated significant wave height with measurement

    图  7  风暴增水实测值与模拟值对比

    Figure  7.  The comparison of calculated storm surge with measurement

    图  8  样本数据集

    Figure  8.  The dataset of samples

    图  9  构建三维联合分布

    Figure  9.  Construction of three-dimensional joint distribution

    图  10  基于不同组合构造环境等值面

    Figure  10.  Environmental contours constructed with different correlation combinations

    图  11  基于不同环境等值面计算的波流力

    Figure  11.  Wave and current loads calculated with different environmental contours

    表  1  广义极值分布参数

    Table  1.   The fitted parameters of GEV

    数据形状参数
    k
    尺度参数
    σ
    位置参数
    μ
    均方根差
    RMSE
    K-S检验
    有效波高Hs0.12491.18840.77140.028通过
    谱峰周期Tp−0.26504.04821.35450.027
    流速Vc−0.41132.13420.42710.029
    潮位S−0.14231.88870.31990.022
    下载: 导出CSV

    表  2  考虑不同环境参数相关性的组合

    Table  2.   Correlation combinations of different environmental conditions

    相关性组合缩写
    不考虑相关性Hs-100 + Tp-100 + Vc-100 + S-100独立
    二维环境等值面C(Hs , Tp)-100 + Vc-100 + S-100Hs-Tp
    C(Vc , S)-100 + Hs-100 + Tp-100Vc-S
    C(Hs, S)-100 + Vc-100 + Tp-linearHs-S
    三维环境等值面C(Vc, S, Hs)-100 + Tp-linearVc-S-Hs
    下载: 导出CSV

    表  3  不同组合计算的波流力与对比系数

    Table  3.   Wave and current loads calculated with different correlation combinations and contrast coefficients

    组合水平剪力/
    kN
    基底弯矩/
    (kN·m)
    水平剪力对比系数γF/(%)基底弯矩对比
    系数γM/(%)
    独立 60 938 2 267 787
    Hs-Tp 57 915 2 160 049 −4.96 −4.75
    Vc-S 60 337 2 243 432 −0.99 −1.07
    Hs-S 60 388 2 239 350 −0.90 −1.25
    Vc-S-Hs 50 336 1 904 914 −17.40 −16.00
    下载: 导出CSV

    表  4  波流力与环境参数间的Spearman相关系数

    Table  4.   Spearman's correlation coefficients between wave and current loads and environmental parameters

    组合环境
    参数
    Spearman相关系数
    水平剪力基底弯矩
    Hs-Tp有效波高Hs0.9600.986
    谱峰周期Tp0.9300.893
    Vc-S流速Vc0.9930.977
    潮位S0.5990.612
    Hs-S有效波高Hs0.9990.999
    潮位S0.4500.450
    Vc-S-Hs流速Vc0.8850.752
    潮位S0.4290.486
    有效波高Hs0.6500.818
    下载: 导出CSV
  • [1] Ti Z, Wei K, Li Y, et al. Effect of wave spectral variability on stochastic response of a long-span bridge subjected to random waves during tropical cyclones [J]. Journal of Bridge Engineering, 2020, 25(1): 04019118.
    [2] JTS145−2015, 港口与航道水文规范[S]. 北京: 中华人民共和国交通运输部, 2015.

    JTS145−2015, Code of hydrology for harbour and waterway [S]. Beijing: Ministry of Transport of the People's Republic of China, 2015. (in Chinese)
    [3] API RP 2A-LRFD, Planning, designing and constructing for fixed offshore platforms load and resistance factor design [S]. Washington D. C.: American Petroleum Institute, 2019: 26 − 43.
    [4] Wei K, Shen Z, Ti Z, et al. Trivariate joint probability model of typhoon-induced wind, wave and their time lag based on the numerical simulation of historical typhoons [J]. Stochastic Environmental Research and Risk Assessment, 2021, 35(2): 325 − 344. doi: 10.1007/s00477-020-01922-w
    [5] Huang W, Dong S. Joint distribution of significant wave height and zero-up-crossing wave period using mixture copula method [J]. Ocean Engineering, 2021, 219: 108305.
    [6] Bruserud K, Haver S, Myrhaug D. Joint description of waves and currents applied in a simplified load case [J]. Marine Structures, 2018, 58: 416 − 433.
    [7] Qiao C, Myers A T. A new IFORM-Rosenblatt framework for calculation of environmental contours [J]. Ocean Engineering, 2021, 238: 109622. doi: 10.1016/j.oceaneng.2021.109622
    [8] Li Q, Gao Z, Moan T. Modified environmental contour method for predicting long-term extreme responses of bottom-fixed offshore wind turbines [J]. Marine Structures, 2016, 48: 15 − 32.
    [9] 葛耀君. 大跨度桥梁抗风的技术挑战与精细化研究[J]. 工程力学, 2011, 28(增刊 2): 11 − 23.

    Ge Yaojun. Technical Challenges and Refinement Research on Wind Resistance of Long-Span Bridges [J]. Engineering Mechanics, 2011, 28(Suppl 2): 11 − 23. (in Chinese)
    [10] Ge Y, Zhao L. Wind-excited stochastic vibration of long-span bridge considering wind field parameters during typhoon landfall [J]. Wind and Structures, 2014, 19(4): 421 − 441. doi: 10.12989/was.2014.19.4.421
    [11] 魏凯, 沈忠辉, 吴联活, 等. 强台风作用下近岸海域波浪-风暴潮耦合数值模拟[J]. 工程力学, 2019, 36(11): 139 − 146. doi: 10.6052/j.issn.1000-4750.2018.12.0646

    Wei Kai, Shen Zhonghui, Wu Lianhuo, et al. Coupled numerical simulation on wave and storm surge in coastal areas under strong typhoons [J]. Engineering Mechanics, 2019, 36(11): 139 − 146. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.12.0646
    [12] Miyazaki M, Ueno T, Unoki S. Theoretical investigations of typhoon surges along the Japanese coast [J]. Oceanographic Magazine, 1962, 13(2): 103 − 117.
    [13] Holland G J. An analytic model of the wind and pressure profiles in hurricanes [J]. Monthly Weather Review, 1980, 108(8): 1212 − 1218. doi: 10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2
    [14] 魏凯, 钟茜, 沈忠辉, 等. 台风作用下风-浪-潮三维环境等值面模型[J]. 工程力学, 2021, 38(11): 189 − 198. doi: 10.6052/j.issn.1000-4750.2020.11.0831

    Wei Kai, Zhong Xi, Shen Zhonghui, et al. Environmental contour of wind-wave-storm surges induced by typhoons [J]. Engineering Mechanics, 2021, 38(11): 189 − 198. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0831
    [15] Zhou T, Ya T, Ao C. Integrated model for astronomic tide and storm surge induced by typhoon for Ningbo Coast [R]. Japan: International Society of Offshore and Polar Engineers, 2018.
    [16] 孙志林, 王辰, 钟汕虹, 等. 浪潮耦合的舟山渔港台风暴潮数值模拟[J]. 海洋通报, 2019, 38(2): 150 − 158.

    Sun Zhilin, Wang Chen, Zhong Shanhong, et al. Numerical simulation of storm surge coupled with wave in Zhoushan fishing port [J]. Marine Science Bulletin, 2019, 38(2): 150 − 158. (in Chinese)
    [17] IEC 61400-1 Ed. 3, Wind turbines-Part 1: Design requirements [S]. Intl. Electrotechnical Commission: Geneva Switzerland, 2005: 19 − 32.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  23
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-30
  • 修回日期:  2022-02-21
  • 网络出版日期:  2022-03-14
  • 刊出日期:  2022-06-06

目录

    /

    返回文章
    返回