留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高寒地区交通线路风速及风向预测研究

骆颜 马文勇 孙元春

骆颜, 马文勇, 孙元春. 高寒地区交通线路风速及风向预测研究[J]. 工程力学, 2022, 39(S): 195-201. doi: 10.6052/j.issn.1000-4750.2021.05.S037
引用本文: 骆颜, 马文勇, 孙元春. 高寒地区交通线路风速及风向预测研究[J]. 工程力学, 2022, 39(S): 195-201. doi: 10.6052/j.issn.1000-4750.2021.05.S037
LUO Yan, MA Wen-yong, SUN Yuan-chun. PREDICTION ON WIND SPEED AND WIND DIRECTION OF TRAFFIC LINE IN ALPINE REGION[J]. Engineering Mechanics, 2022, 39(S): 195-201. doi: 10.6052/j.issn.1000-4750.2021.05.S037
Citation: LUO Yan, MA Wen-yong, SUN Yuan-chun. PREDICTION ON WIND SPEED AND WIND DIRECTION OF TRAFFIC LINE IN ALPINE REGION[J]. Engineering Mechanics, 2022, 39(S): 195-201. doi: 10.6052/j.issn.1000-4750.2021.05.S037

高寒地区交通线路风速及风向预测研究

doi: 10.6052/j.issn.1000-4750.2021.05.S037
基金项目: 河北省引进留学人员资助项目(C20200359);石家庄铁道大学研究生创新资助项目(YC2021019)
详细信息
    作者简介:

    骆 颜(1995−),女,四川人 ,硕士生,主要从事结构的风荷载、风致振动与控制研究(E-mail: lydaisy1005@163.com)

    孙元春(1981−),男,山西人,工程师,博士,主要从事特殊地质条件隧道围岩稳定性分析方面的研究(E-mail: syc180@163.com)

    通讯作者:

    马文勇(1981−),男,陕西人,教授,博士,主要从事结构的风荷载、风致振动与控制研究(E-mail: ma@stdu.edu.cn)

  • 中图分类号: U492.8

PREDICTION ON WIND SPEED AND WIND DIRECTION OF TRAFFIC LINE IN ALPINE REGION

  • 摘要: 高寒地区交通线路风吹雪灾害严重,对交通线路全线天气状况的预测对于该类灾害的预测至关重要,目前该方面的研究仍然比较缺乏。该文采用WRF(天气研究预报模型)中尺度天气数值模拟,以新疆克塔铁路为研究对象,模拟该线路所在区域2018年−2019年冬季的天气状况。通过水平分辨率10 km~2 km的双重嵌套模拟,调整微物理方案及行星边界层方案,得到铁路沿线不同路段风速分布概率以及相应的主导风向。研究表明:WRF模拟结果能够较好的反映出道路沿线各路段不同的风速概率分布,结合主导风向与线路夹角,为预测不同路段发生风吹雪灾害的概率提供更加精确地依据,并为道路选线以及路段形式的设计提供参考。
  • 图  1  WRF模拟范围

    Figure  1.  WRF modeling range

    图  2  逐时温度模拟结果与气象站观测数据对比图

    Figure  2.  The comparison of hourly temperature between the simulation results and station observation

    图  3  逐时风速模拟结果与气象站观测数据对比图

    Figure  3.  The comparison of hourly wind velocity between the simulation results and station observation

    图  4  克塔铁路分段图

    Figure  4.  Sectional diagram of Karamay-Tacheng Railway

    5  克塔铁路K001~K007路段风速概率分布

    5.  Probability distribution of wind velocity in K001~K007 section of Karamay-Tacheng Railway

    6  克塔铁路K001~K007路段风玫瑰图

    6.  Wind rose of K001~K007 section of Karamay-Tacheng Railway

    图  7  K004~K005路段局部地形高程图

    Figure  7.  The local topographic elevation map of K004 ~K005 section

    表  1  组合方案设置

    Table  1.   The combination schemes setting

    方案名称方案1方案2方案3方案4
    微物理方案
    (mp_physics)
    Purdue-LinWSM6Purdue-LinPurdue-Lin
    行星边界层方案
    (bl_pbl_physics)
    YSUYSUMRFMYJ
    下载: 导出CSV

    表  2  其余参数方案设置

    Table  2.   The other physical options

    方案名称方案类型
    长波辐射(ra_lw_physics)RRTM
    短波辐射(ra_sw_physics)Dudhia
    近地面层 (sf_sfclay_physic)MM5
    陆面层(sf_surface_physcs)Noah
    积云参数化(cu_physics)Kain-Fritsch
    下载: 导出CSV

    表  3  K001~K007路段大于起动风速的概率

    Table  3.   Probability of wind speed greater than starting speed in K001~K007 section

    路段K001K002K003K004K005K006K007
    概率/(%)11.211.814.223.549.141.4
    下载: 导出CSV
  • [1] 刘多特, 李永乐, 汪斌. 风雪绕流数值模拟的积雪预测模型研究[J]. 工程力学, 2016, 33(8): 122 − 131. doi: 10.6052/j.issn.1000-4750.2015.01.0019

    Liu Duote, Li Yongle, Wang Bin. A numerical prediction model for snow accumulation caused by ambient snowdrift [J]. Engineering Mechanics, 2016, 33(8): 122 − 131. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.01.0019
    [2] 李飞强, 马文勇, 崔子晗, 等. 基于两方程模型的路堤风吹雪数值模拟[J]. 工程力学, 2021, 38(增刊): 189 − 194. doi: 10.6052/j.issn.1000-4750.2020.05.S034

    Li Feiqiang, Ma Wenyong, Cui Zihan, et al. Numerical simulation of snowdrift on embankment based on two equation model [J]. Engineering Mechanics, 2021, 38(Suppl): 189 − 194. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.S034
    [3] 马文勇, 崔子晗, 柴晓兵. 风速和持续时间对立方体周边风致积雪演化影响研究[J]. 工程力学, 2022, 39(1): 108 − 117. doi: 10.6052/j.issn.1000-4750.2020.12.0884

    Ma Wenyong, Cui Zihan, Chai Xiaobing. Effects of wind speed and duration on process of snow distribution around a cube [J]. Engineering Mechanics, 2022, 39(1): 108 − 117. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.12.0884
    [4] 李弘毅, 王建, 郝晓华. 祁连山区风吹雪对积雪质能过程的影响[J]. 冰川冻土, 2012, 34(5): 1084 − 1090.

    Li Hongyi, Wang Jian, Hao Xiaohua. Influence of blowing snow on snow mass and energy exchanges in the Qilian Mountainous [J]. Journal of Glaciology and Geocryology, 2012, 34(5): 1084 − 1090. (in Chinese)
    [5] Ma W, Li F, Sun Y, et al. Field measurement and numerical simulation of snow deposition on an embankment in snowdrift [J]. Wind Struct, 2021, 32(5): 453 − 469.
    [6] 张家平. 黑龙江省公路风吹雪灾害时空分布与防治技术研究[D]. 西安: 长安大学, 2012.

    Zhang Jiaping. Research on the temporal & spatial distribution rules and prevention technology of snowdrift disaster of Heilongjiang province [D]. Xi’an: Chang’an University, 2012. (in Chinese)
    [7] 郭丹奇, 柳春红, 吴春玉. 公路风吹雪的形成和影响因素分析[J]. 煤炭技术, 2003, 22(8): 112 − 113. doi: 10.3969/j.issn.1008-8725.2003.08.084

    Guo Danqi, Liu Chunhong, Wu Chunyu. Analysis on the formation and influential factors of snow on highway [J]. Coal technology, 2003, 22(8): 112 − 113. (in Chinese) doi: 10.3969/j.issn.1008-8725.2003.08.084
    [8] 刘衡麟, 李小芳. 公路风吹雪雪害预警分析和防治技术[J]. 黑龙江交通科技, 2014, 37(11): 67. doi: 10.3969/j.issn.1008-3383.2014.11.047

    Liu Henglin, Li Xiaofang. Forewaning analysis and prevention technology of drifting snow disaster of highway [J]. Communications Science and Technology of Heilongjiang, 2014, 37(11): 67. (in Chinese) doi: 10.3969/j.issn.1008-3383.2014.11.047
    [9] 施佳誉, 徐冬英, 夏才初, 等. 公路风吹雪雪阻分布规律及雪灾形成机理研究[J]. 公路, 2020, 65(1): 257 − 264.

    Shi Jiayu, Xu Dongying, Xia Caichu, et al. Research on the distribution law of snow blockage of snow drift on road and the formation mechanism of snow disaster [J]. Highway, 2020, 65(1): 257 − 264. (in Chinese)
    [10] 薛桁, 朱瑞兆, 杨振斌, 等. 中国风能资源贮量估算[J]. 太阳能学报, 2001(2): 167 − 170.

    Xue Heng, Zhu Ruizhao, Yang Zhenbin, et al. Assessment of wind energy reserves in China [J]. Acta Energiae Solaris Sinica, 2001(2): 167 − 170. (in Chinese)
    [11] 祁延录. 考虑风吹雪灾害的新疆克塔铁路选线研究[J]. 铁道科学与工程学报, 2018, 15(11): 2813 − 2824.

    Qi Yanlu. Strategies of railway alignment selection for Karamay-Tacheng railway in Xinjiang considering snow drifting disasters [J]. Journal of Railway Science and Engineering, 2018, 15(11): 2813 − 2824. (in Chinese)
    [12] Skamarock W C, Klemp J B. A time-split nonhydrostatic atmospheric model for research and NWP applications [J]. J Comput Phys: X, 2006, 227(7): 3465 − 3485.
    [13] Tse K T, Li S W, Fung J. A comparative study of typhoon wind profiles derived from field measurements, meso-scale numerical simulations, and wind tunnel physical modeling [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2014, 131: 46 − 58.
    [14] 王澄海, 胡菊, 靳双龙, 等. 中尺度WRF模式在西北西部地区低层风场模拟中的应用和检验[J]. 干旱气象, 2011, 29(2): 161 − 167.

    Wang Chenghai, Hu Ju, Jin Shuanglong, et al. Application and test of lower level wind field simulation with meso-scale model WRF in western region of northwest China [J]. Journal of Arid Meteorology, 2011, 29(2): 161 − 167. (in Chinese)
    [15] Marjanovic N, Wharton S, Chow F K. Investigation of model parameters for high-resolution wind energy forecasting: Case studies over simple and complex terrain [J]. J Wind Eng Ind Aerodyn, 2014, 134(134): 10 − 24.
    [16] Carvalho D, Rocha A, Gomez-Gesteira M, et al. Offshore wind energy resource simulation forced by different re-analyses: Comparison with observed data in the iberian peninsula [J]. Appl Energy, 2014, 134: 57 − 64. doi: 10.1016/j.apenergy.2014.08.018
    [17] 杨旭. 玛依塔斯交通走廊风吹雪特点研究[J]. 铁道工程学报, 2018, 35(12): 1 − 6. doi: 10.3969/j.issn.1006-2106.2018.12.001

    Yang Xu. Research on the characteristics of drifting snow disaster in Xinjiagn Mayitas traffic corridor [J]. Journal of Railway Engineering Society, 2018, 35(12): 1 − 6. (in Chinese) doi: 10.3969/j.issn.1006-2106.2018.12.001
    [18] Carvalho D, Rocha A, Gómez-Gesteira M, et al. A sensitivity study of the WRF model in wind simulation for an area of high wind energy [J]. Environmental Modelling & Software, 2012, 33(7): 23 − 34.
    [19] 于淼, 廉丽姝, 李宝富, 等. 基于WRF模式的青岛沿海地区近地面风的敏感性研究[J]. 热带气象学报, 2020, 36(2): 277 − 288.

    Yu Miao, Lian Lishu, Li baofu, et al. Sensitivity analysis of near-surface wind in Qingdao coastal area based on WRF model [J]. Journal of Tropical Meteorology, 2020, 36(2): 277 − 288. (in Chinese)
    [20] 宋倩, 毛健, 马振兴, 等. WRF模式气象要素模拟精度的验证及订正——以南疆区域为例[J]. 天津师范大学学报(自然科学版), 2020, 40(1): 53 − 59.

    Song Qian, Mao Jian, Ma Zhenxing, et al. Verification and correction of WRF model meteorological element simulation accuracy: A case study of southern margin of Xinjiang, China [J]. Journal of Tianjin Normal University (Natural Science Edition), 2020, 40(1): 53 − 59. (in Chinese)
    [21] 马惠群, 王远坤. 逐时风速概率分布研究[J]. 电网与清洁能源, 2018, 34(12): 53 − 58.

    Ma Huiqun, Wang Yuankun. Research on probability distribution of hourly wind speed [J]. Power System and Clean Energy, 2018, 34(12): 53 − 58. (in Chinese)
    [22] Aslam M. Testing average wind speed using sampling plan for Weibull distribution under indeterminacy [J]. Scientific Reports, 2021, 11: 7532. doi: 10.1038/s41598-021-87136-8
    [23] 王中隆, 李长治. 艾肯达坂风雪流形成机制及其治理[J]. 中国沙漠, 1995, 15(2): 105 − 108.

    Wang Zhonglong, Li Changzhi. The formation mechanism of snow drift in Ainken Daban and its control [J]. Journal of Desert Research, 1995, 15(2): 105 − 108. (in Chinese)
    [24] 吕晓辉, 黄宁, 郭磊, 等. 风吹雪廓线的风洞实验研究[J]. 力学与实践, 2013, 35(1): 20 − 25.

    Lü Xiaohui, Huang Ning, Guo Lei, et al. Wind tunnel study of vertical profile of drifting snow [J]. Mechanics in Engineering, 2013, 35(1): 20 − 25. (in Chinese)
    [25] GB 50009−2019, 建筑结构荷载规范[S]. 北京: 中国建筑工业出版社, 2019.

    GB 50009−2019, Load code for the design of building structures [S]. Beijing: China Building Industry Press, 2019. (in Chinese)
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  27
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-29
  • 修回日期:  2022-03-19
  • 网络出版日期:  2022-04-16
  • 刊出日期:  2022-06-06

目录

    /

    返回文章
    返回