EXPERIMENTAL STUDY ON MECHANICAL PERFORMANCE OF LONG-STROKE SMA RESTRAINER
-
摘要: 普通限位装置极限位移小,极有可能被破坏。为解决这一问题,拟提出一种新型自恢复大行程SMA限位装置。该装置由SMA内芯提供恢复力及耗能能力,由外钢管及砂浆提供抗屈曲能力。理论推导及有限元分析结果表明:该限位装置既可为桥梁提供自复位能力,又可在减小桥梁位移响应的前提下,消耗地震能量。Abstract: With small limit displacement, the common restrainers are likely to be damaged. In order to solve this problem, a new self-centering long-stroke SMA restrainer is proposed. The re-centering force and energy dissipation capacity are provided by the inner SMA bar, and the buckling resistance is provided by the outer steel tube and grout. The results of tests and finite element analysis show that the restrainer can not only provide the bridge with self-centering ability, but also dissipate seismic energy on the premise of reducing the displacement response of the bridge.
-
Key words:
- seismic protection of bridges /
- long-stroke /
- tension and compression test /
- shape memory alloy /
- Abaqus
-
表 1 SMA试件参数表
Table 1. Parameters of SMA bars
长细比$ \mathrm{\lambda } $ 直径/mm 无支承长度/mm 25 12 75 45 12 135 95 12 258 -
[1] 胡淑军, 顾琦, 姜俊, 等. 自复位SMA支撑的滞回性能与简化力学模型[J]. 建筑结构学报, 2020, 41(增刊 1): 73 − 82.Hu Shujun, Gu Qi, Jiang Jun, et al. Hysteresis performance and simplified mechanical model of an innovative self-centering SMA brace [J]. Journal of Building Structures, 2020, 41(Suppl 1): 73 − 82. (in Chinese) [2] Wang C J, Shih M H. 在强烈地震中产生桥面滑移和桥墩碰撞的桥梁性能研究[J]. 钢结构, 2008(5): 76 − 77.Wang C J, Shih M H. Study on bridge performance caused by bridge deck slip and pier collision in strong earthquake [J]. Steel Construction, 2008(5): 76 − 77. (in Chinese) [3] 杨海波, 尹晓春, 徐然. 近场竖向地震激励下桥梁支座对竖向碰撞的影响[J]. 工程力学, 2014, 31(6): 183 − 189. doi: 10.6052/j.issn.1000-4750.2012.12.1020Yang Haibo, Yin Xiaochun, Xu Ran. Effect of bridge bearing on vertical pounding in bridges under near-fault vertical earthquakes [J]. Engineering Mechanics, 2014, 31(6): 183 − 189. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.12.1020 [4] 姚远, 禹奇才, 刘爱荣, 等. 一种新型形状记忆合金(SMA)-粘滞阻尼器[J]. 广州大学学报(自然科学版), 2008(2): 91 − 94.Yao Yuan, Yu Qicai, Liu Airong, et al. A new type of shape memory alloy (SMA)-fluid viscous damper [J]. Journal of Guangzhou University (Natural Science Edition), 2008(2): 91 − 94. (in Chinese) [5] Systèmes D. Abaqus 6.12 online documentation [S]. https://www.3ds.com/support/hardware-and-software/simulia-system-information/abaqus-612.2012. [6] Auricchio F, Taylor R L. Shape-memory alloys: Modelling and numerical simulations of the finite-strain superelastic behavior [J]. Computer Methods in Applied Mechanics & Engineering, 1997, 143(1/2): 175 − 194. [7] Rahman M A, Qiu J, Tani J. Buckling and postbuckling characteristics of the superelastic SMA columns [J]. International Journal of Solids & Structures, 2001, 38(50): 9253 − 9265. [8] Rahman M A, Tani J. Postbuckling characteristics of the short superelastic shape memory alloy columns-experiment and quantitative analysis [J]. Applied Mechanics and Engineering, 2006, 11(4): 941. [9] Pereiro-Barceló J, Bonet J L. Ni-Ti SMA bars behaviour under compression [J]. Construction & Building Materials, 2017, 155: 348 − 362. [10] Cao S, Ozbulut O E. Long-stroke shape memory alloy restrainers for seismic protection of bridges [J]. Smart Materials and Structures, 2020, 29(11): 115005. [11] Pereiro-Barceló J, Bonet J L. Ni-Ti SMA bars behaviour under compression [J]. Construction and Building Materials, 2017, 155: 348 − 362. doi: 10.1016/j.conbuildmat.2017.08.083 [12] Wang W, Fang C, Liu J. Large size superelastic SMA bars: Heat treatment strategy, mechanical property and seismic application [J]. Smart Materials & Structures, 2016, 25(7): 075001. [13] Li C, Zhou Z, Zhu Y. A uniaxial constitutive model for NiTi shape memory alloy bars considering the effect of residual strain [J]. Journal of Intelligent Material Systems and Structures, 2019, 30(8): 1045389X1983593. [14] Desroches R, Delemont M. Seismic retrofit of simply supported bridges using shape memory alloys [J]. Engineering Structures, 2002, 24(3): 325 − 332. -