留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自恢复大行程形状记忆合金限位装置研究

胡付龙 曹飒飒

胡付龙, 曹飒飒. 自恢复大行程形状记忆合金限位装置研究[J]. 工程力学, 2022, 39(S): 202-206. doi: 10.6052/j.issn.1000-4750.2021.05.S039
引用本文: 胡付龙, 曹飒飒. 自恢复大行程形状记忆合金限位装置研究[J]. 工程力学, 2022, 39(S): 202-206. doi: 10.6052/j.issn.1000-4750.2021.05.S039
HU Fu-long, CAO Sa-sa. EXPERIMENTAL STUDY ON MECHANICAL PERFORMANCE OF LONG-STROKE SMA RESTRAINER[J]. Engineering Mechanics, 2022, 39(S): 202-206. doi: 10.6052/j.issn.1000-4750.2021.05.S039
Citation: HU Fu-long, CAO Sa-sa. EXPERIMENTAL STUDY ON MECHANICAL PERFORMANCE OF LONG-STROKE SMA RESTRAINER[J]. Engineering Mechanics, 2022, 39(S): 202-206. doi: 10.6052/j.issn.1000-4750.2021.05.S039

自恢复大行程形状记忆合金限位装置研究

doi: 10.6052/j.issn.1000-4750.2021.05.S039
基金项目: 国家自然科学基金项目 (52178124,51608136,51278134);广东省自然科学基金项目(2020A1515010231);广东省科技计划项目 (2020A1414010271);中国地震局工程力学研究所基本科研业务费专项项目(2019D19)
详细信息
    作者简介:

    胡付龙(1993−),男,广东人,硕士生,主要从事桥梁抗震研究(E-mail: 1915349636@qq.com)

    通讯作者:

    曹飒飒(1982−),男,河南人,讲师,博士,主要从事桥梁抗震研究(E-mail: cao@gzhu.edu.cn)

  • 中图分类号: U442.5+5

EXPERIMENTAL STUDY ON MECHANICAL PERFORMANCE OF LONG-STROKE SMA RESTRAINER

  • 摘要: 普通限位装置极限位移小,极有可能被破坏。为解决这一问题,拟提出一种新型自恢复大行程SMA限位装置。该装置由SMA内芯提供恢复力及耗能能力,由外钢管及砂浆提供抗屈曲能力。理论推导及有限元分析结果表明:该限位装置既可为桥梁提供自复位能力,又可在减小桥梁位移响应的前提下,消耗地震能量。
  • 图  1  LSR基本构造

    Figure  1.  Basic structure of LSR

    图  2  LSR屈曲机制与抗屈曲体系

    Figure  2.  Buckling and anti-buckling system

    图  3  SMA棒临界状态受力分析

    Figure  3.  Force analysis of critical state of LRB

    图  4  SMA棒的Von-Mises应力代表性轮廓图

    Figure  4.  Von-mises contour of SMA bar

    图  5  SMA试件试验与数值模拟结果比较

    Figure  5.  Comparison of experimental and simulation results of SMA bars

    图  6  3种试件屈曲试验与数值模拟结果

    Figure  6.  Buckling analyses of 3 SMA bars

    图  7  LSR的Abaqus数值模型

    Figure  7.  FE model of LSR in Abaqus

    图  8  LSR循环拉压试验和模拟结果

    Figure  8.  Experimental and simulation results of LSR under cyclic tension and compression

    表  1  SMA试件参数表

    Table  1.   Parameters of SMA bars

    长细比$ \mathrm{\lambda } $直径/mm无支承长度/mm
    251275
    4512135
    9512258
    下载: 导出CSV
  • [1] 胡淑军, 顾琦, 姜俊, 等. 自复位SMA支撑的滞回性能与简化力学模型[J]. 建筑结构学报, 2020, 41(增刊 1): 73 − 82.

    Hu Shujun, Gu Qi, Jiang Jun, et al. Hysteresis performance and simplified mechanical model of an innovative self-centering SMA brace [J]. Journal of Building Structures, 2020, 41(Suppl 1): 73 − 82. (in Chinese)
    [2] Wang C J, Shih M H. 在强烈地震中产生桥面滑移和桥墩碰撞的桥梁性能研究[J]. 钢结构, 2008(5): 76 − 77.

    Wang C J, Shih M H. Study on bridge performance caused by bridge deck slip and pier collision in strong earthquake [J]. Steel Construction, 2008(5): 76 − 77. (in Chinese)
    [3] 杨海波, 尹晓春, 徐然. 近场竖向地震激励下桥梁支座对竖向碰撞的影响[J]. 工程力学, 2014, 31(6): 183 − 189. doi: 10.6052/j.issn.1000-4750.2012.12.1020

    Yang Haibo, Yin Xiaochun, Xu Ran. Effect of bridge bearing on vertical pounding in bridges under near-fault vertical earthquakes [J]. Engineering Mechanics, 2014, 31(6): 183 − 189. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.12.1020
    [4] 姚远, 禹奇才, 刘爱荣, 等. 一种新型形状记忆合金(SMA)-粘滞阻尼器[J]. 广州大学学报(自然科学版), 2008(2): 91 − 94.

    Yao Yuan, Yu Qicai, Liu Airong, et al. A new type of shape memory alloy (SMA)-fluid viscous damper [J]. Journal of Guangzhou University (Natural Science Edition), 2008(2): 91 − 94. (in Chinese)
    [5] Systèmes D. Abaqus 6.12 online documentation [S]. https://www.3ds.com/support/hardware-and-software/simulia-system-information/abaqus-612.2012.
    [6] Auricchio F, Taylor R L. Shape-memory alloys: Modelling and numerical simulations of the finite-strain superelastic behavior [J]. Computer Methods in Applied Mechanics & Engineering, 1997, 143(1/2): 175 − 194.
    [7] Rahman M A, Qiu J, Tani J. Buckling and postbuckling characteristics of the superelastic SMA columns [J]. International Journal of Solids & Structures, 2001, 38(50): 9253 − 9265.
    [8] Rahman M A, Tani J. Postbuckling characteristics of the short superelastic shape memory alloy columns-experiment and quantitative analysis [J]. Applied Mechanics and Engineering, 2006, 11(4): 941.
    [9] Pereiro-Barceló J, Bonet J L. Ni-Ti SMA bars behaviour under compression [J]. Construction & Building Materials, 2017, 155: 348 − 362.
    [10] Cao S, Ozbulut O E. Long-stroke shape memory alloy restrainers for seismic protection of bridges [J]. Smart Materials and Structures, 2020, 29(11): 115005.
    [11] Pereiro-Barceló J, Bonet J L. Ni-Ti SMA bars behaviour under compression [J]. Construction and Building Materials, 2017, 155: 348 − 362. doi: 10.1016/j.conbuildmat.2017.08.083
    [12] Wang W, Fang C, Liu J. Large size superelastic SMA bars: Heat treatment strategy, mechanical property and seismic application [J]. Smart Materials & Structures, 2016, 25(7): 075001.
    [13] Li C, Zhou Z, Zhu Y. A uniaxial constitutive model for NiTi shape memory alloy bars considering the effect of residual strain [J]. Journal of Intelligent Material Systems and Structures, 2019, 30(8): 1045389X1983593.
    [14] Desroches R, Delemont M. Seismic retrofit of simply supported bridges using shape memory alloys [J]. Engineering Structures, 2002, 24(3): 325 − 332.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  17
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-29
  • 修回日期:  2022-01-22
  • 网络出版日期:  2022-03-08
  • 刊出日期:  2022-06-06

目录

    /

    返回文章
    返回