NUMERICAL SIMULATION ANALYSES ON QUASI-STASTIC TESTS OF PRECAST SEGMENTAL PRESTRESSED BRIDGE COLUMNS
-
摘要: 预应力连接预制节段桥墩已在美国低震区桥梁中得到较多应用,但在我国的工程应用甚少。由于预制节段桥墩的震害资料缺乏,震害经验不足,且其抗震机理不明确、设计方法不完善,在强震区较少应用。该文基于预应力连接预制节段墩柱缩尺模型的拟静力往复试验测试,采用有限元分析软件ABAQUS建立其精细化数值模型,进行了单向、斜向往复荷载作用下墩柱拟静力试验数值仿真,将桥墩的损伤特征、滞回行为、墩内竖向预应力和预制节段间接缝开口量与试验测试结果进行了对比分析。结果表明:该文建立的预制节段桥墩数值模型可较好地再现拟静力试验结果,试验和模拟结果均表明斜向加载的预制节段墩柱较单向加载的构件损伤更为严重,构件屈服更早,残余位移较大,墩柱最大偏移率达4%时其残余偏移率已超过1%。常规设计中桥墩按纵桥向或横桥向单向抗震设计偏于不保守,特别是考虑震后功能可恢复或可修复时建议考虑多向地震作用影响。Abstract: Precast segmental prestressed columns have been widely applied in low seismicity regions in United States, but there are few applications in China. Due to the lack of seismic damage data, to the insufficient knowledge of their seismic performance and to the imperfect design method, the application in high seismicity regions is limited. According to the existing quasi-static test of a scale precast segmental prestressed column, a numerical model for the precast column under unidirectional and diagonal cyclic loads was developed by software ABAQUS, and its nonlinear behavior was verified by the experimental results. The local damage, hysteresis behavior, prestress force and joint opening of the model were compared and analyzed with the experimental results. The research results show that: the results of the model are in a good agreement with the experimental results. Both the test and simulation results show that the column under diagonal cyclic loading has more serious concrete damage, smaller yield displacement and lager residual displacement compared with the column under unidirectional cyclic loading. The residual drift has exceeded 1% when the maximum drift of the column is 4%. Therefore, only considering the unidirectional load can be non-conservative in the seismic design of precast segmental columns, it is recommended to consider the influence of multidirectional seismic loads especially when considering that the columns can be restored or repaired after earthquakes.
-
表 1 U1试件试验与模拟的抗震性能对比
Table 1. Comparison of seismic performance in experiment and simulation for specimen U1
参数 屈服荷载/kN 峰值荷载/kN 总耗能/kJ 试验 60.5 81.3 63.2 模拟 64.9 82.2 72.8 偏差/(%) 7.3 1.1 13.2 表 2 B1试件试验与模拟的抗震性能对比
Table 2. Comparison of seismic performance in experiment and simulation for specimen B1
参数 屈服荷载/kN 峰值荷载/kN 总耗能/kJ 试验 52.0 65.0 56.26 模拟 56.5 61.2 56.18 偏差/(%) 8.7 6.2 0.14 -
[1] Kapur J, Yen W P, Dekelbab W, et al. Best practices regarding performance of ABC Connections in bridges subjected to multihazard and extreme events [J]. Bridge Construction, 2012. [2] 王景全, 王震, 高玉峰, 等. 预制桥墩体系抗震性能研究进展: 新材料、新理念、新应用[J]. 工程力学, 2019, 36(3): 1 − 23. doi: 10.6052/j.issn.1000-4750.2018.10.ST03Wang Jingquan, Wang Zhen, Gao Yufeng, et al. Review on aseismic behavior of precast piers: new material, new concept, and new application [J]. Engineering Mechanics, 2019, 36(3): 1 − 23. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.10.ST03 [3] Mander J B, Cheng C T. Seismic resistance of bridge piers based on damage avoidance design [R]. New York: National Center for Earthquake Engineering Research, State University of New York at Buffalo, 1997. [4] 贾俊峰, 赵建瑜, 张强, 等. 后张预应力节段拼装CFST桥墩抗侧力学行为试验[J]. 中国公路学报, 2017, 30(3): 236 − 245.Jia Junfeng, Zhao Jianyu, Zhang Qiang, et al. Experiment on lateral bearing behavior of post-tensioned segmental CFST bridge pier column [J]. China Journal of Highway and Transport, 2017, 30(3): 236 − 245. (in Chinese) [5] Wang Z, Wang J Q, Tang Y C, et al. Seismic behavior of precast segmental UHPC bridge columns with replaceable external cover plates and internal dissipaters [J]. Engineering Structures, 2018, 177: 540 − 555. doi: 10.1016/j.engstruct.2018.10.012 [6] Billington S L, Yoon J K. Cyclic response of unbounded posttensioned precast columns with ductile fiber reinforced concrete [J]. Journal of Bridge Engineering, 2004, 9(4): 353 − 363. doi: 10.1061/(ASCE)1084-0702(2004)9:4(353) [7] Palermo A, Pampanin S, Marriott D. Design, modeling, and experimental response of seismic resistant bridge piers with posttensioned dissipating connections [J]. Journal of Structural Engineering, 2007, 133(11): 1648 − 1661. doi: 10.1061/(ASCE)0733-9445(2007)133:11(1648) [8] Ou Y-C, Wang P-H, Tsai M-S, et al. Large-scale experimental study of precast segmental unbonded posttensioned concrete bridge columns for seismic regions [J]. Journal of Structural Engineering, 2010, 136(3): 255 − 264. doi: 10.1061/(ASCE)ST.1943-541X.0000110 [9] Guo T, Cao Z, Xu Z, et al. Cyclic load tests on self-centering concrete pier with external dissipators and enhanced durability[J]. Journal of Structural Engineering 2016;142(1): 04015088. [10] ElGawady MA, Sha'lan A. Seismic behavior of self-centering precast segmental bridge bents [J]. Journal of Bridge Engineering, 2011, 16(3): 328 − 339. [11] 贾俊峰, 魏博, 欧进萍, 等. 外置可更换耗能器的自复位预制拼装桥墩抗震性能试验[J]. 振动与冲击, 2021, 40(5): 160 − 168.Jia Junfeng, Wei Bo, Ou Jinping, et al. Tests for seismic performance of prefabricated self-centering bridge piers with external replaceable energy dissipator [J]. Journal of Vibration and Shock, 2021, 40(5): 160 − 168. (in Chinese) [12] 石岩, 钟正午, 秦洪果, 等. 装配铅挤压阻尼器的摇摆-自复位双柱墩抗震性能及设计方法[J]. 工程力学, 2021, 38(8): 166 − 177, 203. doi: 10.6052/j.issn.1000-4750.2020.08.0575Shi Yan, Zhong Zhengwu, Tai Hongguo, et al. Seismic performance and corresponding design method of rocking self-centering bridge bents equipped with lead-extrusion dampers [J]. Engineering Mechanics, 2021, 38(8): 166 − 177, 203. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0575 [13] Jia J F, Zhang K D, Wu S W, et al, Wang X. Seismic performance of self-centering precast segmental bridge columns under different lateral loading directions [J]. Engineering Structures. 2020, 221: 111037. [14] Li C, Bi K, Hao H. Seismic performances of precast segmental column under bidirectional earthquake motions: shake table test and numerical evaluation [J]. Engineering Structures, 2019, 187: 314 − 328. doi: 10.1016/j.engstruct.2019.03.001 [15] GB 50010−2010, 混凝土结构设计规范[S]. 北京: 中华人民共和国住房和城乡建设部, 2010.GB 50010−2010, Code for design of concrete structures [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese) [16] 日本道路協会. 道路橋示方書·同解説—V 耐震設計編[S]. 東京: 丸善出版, 2012.Japan Road Association. Road and bridge explanation book and interpretation—V Seismic design [S]. Tokyo: Maruzen, 2012. (in Japanese) [17] 冯鹏, 强翰霖, 叶列平. 材料、构件、结构的“屈服点”定义与讨论[J]. 工程力学, 2017, 34(3): 36 − 46. doi: 10.6052/j.issn.1000-4750.2016.03.0192Feng Peng, Qiang Hanlin, Ye Lieping. Discussion and definition on yield points of materials, members and structures [J]. Engineering Mechanics, 2017, 34(3): 36 − 46. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.03.0192 -