留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于边界模态的结构密封胶损伤识别实验研究

江坤 潘旦光 张喜臣 胡乃冬

江坤, 潘旦光, 张喜臣, 胡乃冬. 基于边界模态的结构密封胶损伤识别实验研究[J]. 工程力学, 2022, 39(S): 350-355. doi: 10.6052/j.issn.1000-4750.2021.05.S046
引用本文: 江坤, 潘旦光, 张喜臣, 胡乃冬. 基于边界模态的结构密封胶损伤识别实验研究[J]. 工程力学, 2022, 39(S): 350-355. doi: 10.6052/j.issn.1000-4750.2021.05.S046
JIANG Kun, PAN Dan-guang, ZHANG Xi-chen, HU Nai-dong. TEST STUDY ON DAMAGE IDENTIFICATION OF STRUCTURAL SEALANT BASED ON BOUNDARY MODAL[J]. Engineering Mechanics, 2022, 39(S): 350-355. doi: 10.6052/j.issn.1000-4750.2021.05.S046
Citation: JIANG Kun, PAN Dan-guang, ZHANG Xi-chen, HU Nai-dong. TEST STUDY ON DAMAGE IDENTIFICATION OF STRUCTURAL SEALANT BASED ON BOUNDARY MODAL[J]. Engineering Mechanics, 2022, 39(S): 350-355. doi: 10.6052/j.issn.1000-4750.2021.05.S046

基于边界模态的结构密封胶损伤识别实验研究

doi: 10.6052/j.issn.1000-4750.2021.05.S046
基金项目: 建筑围护材料性能提升关键技术研究与应用 (2016YFC0700805)
详细信息
    作者简介:

    江 坤 (1994−),男,安徽人,博士生,主要从事结构防灾减灾工程研究 (E-mail: kunjiang1234@163.com )

    张喜臣(1974−),男,吉林人,高工,博士,主要从事建筑幕墙门窗安全技术研究(E-mail: zhangxichen@cabr-bctc.com)

    胡乃冬(1988−),男,河北人,工程师,硕士,主要从事建筑幕墙门窗安全技术研究(E-mail: naidong2472@sina.com)

    通讯作者:

    潘旦光(1974−),男,浙江人,教授,博士,博导,主要从事结构防灾减灾工程研究 (E-mail: pdg@ustb.edu.cn )

  • 中图分类号: TU317

TEST STUDY ON DAMAGE IDENTIFICATION OF STRUCTURAL SEALANT BASED ON BOUNDARY MODAL

  • 摘要: 根据隐框玻璃幕墙面板单元结构密封胶损伤位于面板单元边界的特点,提出基于边界模态构建平均边界模态保证准则、平均边界曲率模态差变化率和平均边界模态应变能变化率3个新的损伤指标进行损伤识别。然后,进行一个长2.06 m、宽1.46 m的隐框面板单元的模态试验,研究边界模态损伤指标及固有频率、传统模态保障准则随损伤程度的变化规律。试验研究结果表明:当结构密封胶损伤程度小于5%时,前6阶固有频率和传统模态保证准则难以进行结构密封胶的局部损伤识别;当结构密封胶损伤1%时,所提三个基于边界模态的损伤指标均大于9%,且随着损伤的增大而增大,均能有效识别损伤,其中平均边界曲率模态差变化率在损伤边的变化大于未损伤边,可进一步用于损伤边的识别。
  • 图  1  实验样品

    Figure  1.  Experimental sample

    图  2  损伤示意图 /m

    Figure  2.  Damage process diagram

    图  3  敲击点布置

    Figure  3.  Tapping points

    图  4  振型相关矩阵校验

    Figure  4.  Calibration of model correlation matrix

    图  5  基于固有频率变化的结果分析

    Figure  5.  Result analysis based on frequency variation

    图  6  不同损伤下传统模态保证准则

    Figure  6.  The MAC of various damage cases

    图  7  不同工况下ABMAC

    Figure  7.  ABMAC of various damage cases

    图  8  不同工况下ABMCD

    Figure  8.  ABMCD of various damage cases

    图  9  不同工况下ABMSE

    Figure  9.  ABMSE of various damage cases

    表  1  结构胶损伤工况

    Table  1.   Structural sealant damage condition

    工况123456789
    损伤程度/(%)012345678
    下载: 导出CSV
  • [1] GB/T 39525−2020, 玻璃幕墙面板牢固度检测方法[S]. 北京: 中国标准出版社, 2020.

    GB/T 39525−2020, Test method for the fastening degree of glass curtain wall panel [S]. Beijing: Standards Press of China, 2020. (in Chinese)
    [2] 包亦望, 刘小根. 玻璃幕墙安全评估与风险预测[M]. 北京: 中国建筑工业出版社, 2016.

    Bao Yiwang, Liu Xiaogen. Safety assessment and risk prediction of glass curtain wall [M]. Beijing: China Building Industry Press, 2016. (in Chinese)
    [3] Doebling S W, Farrar C R, Prime M B, et al. Damage identification and health monitoring of structural and mechanical systems from change in their vibration characteristics: A literature review [J]. The Shock and Vibration Digest, 1996, 30(11): 2043 − 2049.
    [4] 王慧, 郭晨林, 王乐, 张敏照. 基于内积矩阵及深度学习的结构健康监测研究[J]. 工程力学, 2022, 39(2): 14 − 22, 75. doi: 10.6052/j.issn.1000-4750.2020.12.0935

    Wang Hui, Guo Chenlin, Wang Le, Zhang Minzhao. Research on structural health monitoring based on inner product matrix and deep learning [J]. Engineering Mechanics, 2022, 39(2): 14 − 22, 75. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.12.0935
    [5] 卓德兵, 曹晖. 基于小波时频图与轻量级卷积神经网络的螺栓连接损伤识别[J]. 工程力学, 2021, 38(9): 228 − 238. doi: 10.6052/j.issn.1000-4750.2021.02.0116

    Zhuo Debin, Cao Hui. Damage identification of bolted connections based on wavelet time-frequency diagram and lightweight convolutional neural network [J]. Engineering Mechanics, 2021, 38(9): 228 − 238. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.02.0116
    [6] Samman, M. & Biswas, M. Vibration testing for nondestructive evaluation of bridges. II: Results [J]. Journal of Structural Engineering, 1994, 120(1): 269 − 289. doi: 10.1061/(ASCE)0733-9445(1994)120:1(269)
    [7] 刘小根, 包亦望, 宋一乐, 等. 基于动态法对既有玻璃幕墙安全性能评估研究[J]. 土木工程学报, 2009, 42(12): 11 − 15.

    Liu Xiaogen, Bao Yiwang, Song Yile, et al. Safety evaluation of glass curtain walls by using dynamic method [J]. China Civil Engineer Journal, 2009, 42(12): 11 − 15. (in Chinese)
    [8] 刘小根, 包亦望. 基于固有频率变化的框支承玻璃幕墙安全评估[J]. 沈阳工业大学学报, 2011, 33(5): 595 − 600.

    Liu Xiaogen, Bao Yiwang. Safety evaluation for frame supported glass curtain wall based on modal frequency change [J]. Journal of Shenyang University of Technology, 2011, 33(5): 595 − 600. (in Chinese)
    [9] 刘小根, 包亦望, 万德田, 等. 基于模态参数的隐框玻璃幕墙结构胶损伤检测[J]. 门窗, 2009(10): 21 − 26.

    Liu Xiaogen, Bao Yiwang, Wan Detian, et al. Detection of structural adhesive damage of hidden frame glass curtain wall based on modal parameters [J]. Door & Window, 2009(10): 21 − 26. (in Chinese)
    [10] 方治华, 罗文奇. 基于模态曲率的全隐框玻璃幕墙损伤检测研究[J]. 价值工程, 2017, 36(20): 89 − 93.

    Fang Zhihua, Luo Wenqi. Study on the damage detection of full-scale frame-concealed glass curtain-walls based on modal curvature [J]. Value Engineering, 2017, 36(20): 89 − 93. (in Chinese)
    [11] 徐涵, 杨健, 王星尔, 等. 反向传播神经网络在隐框玻璃墙脱胶损伤识别中的应用[J]. 硅酸盐学报, 2019, 47(8): 1073 − 1079.

    Xu Han, Yang Jian, Wang Xinger, et al. Application of back propagation neural network on debonding prediction of glass curtain walls with concealed frame [J]. Journal of the Chinese ceramic Society, 2019, 47(8): 1073 − 1079. (in Chinese)
    [12] Pan Danguang, Jiang Kun, Zhang Xichen, et al. Sealants delamination detection of structural sealant glazing systems based on driving-point accelerator [J]. Shock and Vibration, 2020, 438(18): 1 − 13.
    [13] Huang Zhide, Xie Mowen, Song Hongke, Du Yan. Modal analysis related safety-state evaluation of hidden frame supported glass curtain wall [J]. Journal of Building Engineering, 2018, 20: 671 − 678. doi: 10.1016/j.jobe.2018.08.017
    [14] Hong Xiaobin, Liu Yuan, Liu Yonghong, Lin Peisong. Debonding detection in hidden frame supported glass curtain walls using the nonlinear ultrasonic modulation method with piezoceramic transducers [J]. Sensors, 2018, 18(7): 18072094. doi: 10.3390/s18072094
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  17
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-30
  • 修回日期:  2022-02-18
  • 网络出版日期:  2022-03-19
  • 刊出日期:  2022-06-06

目录

    /

    返回文章
    返回