BUCKLING ANALYSIS AND OPTIMAL DESIGN OF LARGE-SCALE X-BRACE STRUCTURE WITH OUT-OF-PLANE SUPPORT BARS BASED ON ORTHOGONAL TEST METHOD
-
摘要: 基于非线性屈曲有限元模型,该文结合正交试验和多因素方差分析方法研究了大型有面外支撑杆X撑结构的稳定性,并采用非线性曲面回归和BP神经网络机器学习对结构进行了优化设计,获得了临界屈曲系数预测模型,为复杂的高度非线性问题提供了一种解决思路。具体而言,搭建了支持表格形式自动化模拟的ANSYS和SOLIDWORKS联合仿真有限元模型,在充分考虑几何设计参数和边界条件的基础上进行了显著性正交试验和多因素方差分析,从中筛选出了主要影响因素并确定了优化设计自变量。然后,以显著性分析为指导进行了优化设计正交试验,利用非线性曲面回归方法和BP神经网络机器学习方法完成了结构优化设计。研究发现:面内支撑几何参数对结构稳定性的影响更为显著,其中临界屈曲载荷对面内支撑管径的变化最为敏感;另外,面外支撑会增加面内支撑的刚度,且节点位置会显著影响整体结构的稳定性;同时,载荷比的影响也很大,拉力会改善结构稳定性。针对新型复杂结构和初期优化设计,该文提供了一种基于数据驱动的高效优化设计方法。Abstract: Based on the nonlinear flexural finite element model, the stability of the X-braced structure with out-of-plane support was investigated combined orthogonal test and analysis of variance (ANOVA), and nonlinear surface regression and neural network method were used for optimal design, which provided a way for the design of complex nonlinear structures. Specifically, finite element models supporting automated simulations in tabular form were constructed using ANSYS and SOLIDWORKS. The effects of geometric parameters and boundary conditions were fully considered, and factors with important influence were identified by significance orthogonal test and analysis of variance. Then, orthogonal test for optimal design was conducted followed by the structural optimal design using nonlinear regression and BP neural network. The study found that the influence of the in-plane support geometric parameters was greater than that of the out-of-plane support, where a larger diameter of the in-plane support tube led to a more stable structure. In addition, the out-of-plane support can effectively improve the structural stiffness, while the junction position will have great influence on the stability. Finally, the load ratio affected buckling and the tension increased the stability. This paper provided a data-driven optimization design approach in preliminary design.
-
表 1 单杆情况结构显著性试验因素水平表
Table 1. Significance orthogonal test factor level (single rod)
序号 面内支撑夹角θin/(°) 面外支撑夹角θo/(°) 面外支撑
杆长L3/mm面内支撑杆1
壁厚T1/mm面内支撑杆2
壁厚T2/mm1 120 120 60 000 60 60 2 90 90 50 000 45 45 3 60 60 44 000 28 28 4 30 30 40 000 15 15 序号 面外支撑杆
管径Do3/mm面外支撑
壁厚T3/mm面内支撑1长度
比例L11面内支撑2长度
比例L22边界条件 1 1000 60 0.7 0.7 A端受载 2 760 45 0.6 0.6 B端受载 3 600 28 0.5 0.7 C端受载 4 400 15 0.4 0.4 D端受载 序号 面内支撑杆1
管径Do1/mm面内支撑杆2
管径Do2/mm面内支撑杆1
长度L1/mm面内支撑杆2
长度L2/mm1 1000 1000 130 000 130 000 2 900 900 120 000 120 000 3 800 800 110 000 110 000 4 685 685 100 000 100 000 5 600 600 90 000 90 000 6 500 500 80 000 80 000 7 400 400 70 000 70 000 8 300 300 60 000 60 000 表 2 双杆受力下结构显著性试验因素水平表
Table 2. Significance orthogonal test factor level (double rods)
序号 面内支撑
夹角θi/(°)面外支撑
夹角θo/(°)面外支撑
杆长L3/mm面内支撑杆1
壁厚T1/mm面内支撑杆2
壁厚T2/mm1 120 120 60 000 60 60 2 90 90 50 000 45 45 3 60 60 44 000 28 28 4 30 30 40 000 15 15 序号 面外支撑杆
管径Do3/mm面外支撑
壁厚T3/mm面内支撑1长度比例
L11面内支撑2长度比例
L22面内支撑杆1管径
Do1/mm1 500 60 0.7 0.7 800 2 380 45 0.6 0.6 685 3 300 28 0.5 0.5 600 4 200 15 0.4 0.4 500 序号 面内支撑杆2
管径Do2/mm面内支撑杆1
长度L1/mm面内支撑杆2
长度L2/mm边界条件 1 800 12 0000 12 0000 AB端受载 2 685 10 0000 10 0000 AD端受载 3 600 90 000 90 000 BC端受载 4 500 80 000 80 000 CD端受载 序号 加载模式 1 面内支撑杆2受P2=50 MPa恒定压力 2 面内支撑杆2受P2=10 MPa恒定压力 3 面内支撑杆2受P2=1 MPa恒定压力 4 面内支撑杆2受P2=50 MPa恒定拉力 5 面内支撑杆2受P2=10 MPa恒定拉力 6 面内支撑杆2受 P2=1 MPa恒定拉力 7 面内支撑杆1受P2=10 MPa恒定压力 8 面内支撑杆1受P2=1 MPa恒定压力 9 面内支撑杆1受P2=10 MPa恒定拉力 10 面内支撑杆1受P2=1 MPa恒定拉力 11 面内支撑受比例载荷P1/P2=10 12 面内支撑受比例载荷P1/P2=0.1 13 面内支撑受比例载荷P1/P2=1 14 面内支撑受比例载荷P1/P2=-1 15 面内支撑受比例载荷P1/P2=-0.1 16 面内支撑受比例载荷P1/P2=-10 表 3 单杆受力下结构主体间效应检查表
Table 3. Checklist for structural inter-subject effects (single rod)
因素 自由度 均方 方差齐性检验因子F 显著性因子P 边界条件 3 28 618.703 1.126 0.422 θi/(°) 3 101 937.658 4.010 0.085 θo/(°) 3 6058.703 0.238 0.866 L3/mm 3 179 602.464 7.065 0.030 Do1/mm 7 137 043.442 5.391 0.041 T1/mm 3 15 840.652 0.623 0.630 Do2/mm 7 203 461.062 8.003 0.018 T2/mm 3 19 012.296 0.748 0.568 Do3/mm 3 15 718.346 0.618 0.633 T3/mm 3 124 407.499 4.894 0.060 L11 3 98 242.918 3.865 0.090 L1/mm 7 121 571.964 4.782 0.052 L22 3 112 345.126 4.419 0.072 L2/mm 7 94 747.117 3.727 0.083 误差 5 25 421.679 − − R2 0.991 − − − 表 4 双杆受力下结构主体间效应检查表
Table 4. Checklist for structural inter-subject effects (double rods)
因素 自由度 均方 方差齐性检验因子F 显著性因子P 边界条件 3 4625.642 1.182 0.392 加载模式 15 31 732.015 8.109 0.008 θi/(°) 3 24 380.838 6.230 0.028 θo/(°) 3 2027.673 0.518 0.685 L3/mm 3 16 047.151 4.101 0.067 Do1/mm 3 12 536.143 3.204 0.105 T1/mm 3 25 056.977 6.403 0.027 Do2/mm 3 79 646.747 20.354 0.002 T2/mm 3 5475.692 1.399 0.331 Do3/mm 3 10 638.558 2.719 0.137 T3/mm 3 30 235.080 7.727 0.017 L11 3 47 199.944 12.062 0.006 L1/mm 3 37 798.040 9.659 0.010 L22 3 11 265.415 2.879 0.125 L2/mm 3 26 391.344 6.744 0.024 误差 6 3913.150 − − R2 0.996 − − − 表 5 单杆受力下结构优化设计正交试验因素水平表
Table 5. Optimization design orthogonal test factor level (single rod)
序号 面外支撑杆长度L3/mm 面内支撑杆1管径Do1/mm 面内支撑杆2管径Do2/mm 1 56 000 300 200 2 58 000 400 260 3 60 000 500 320 4 62 000 600 380 5 64 000 700 440 6 66 000 800 500 7 68 000 900 560 8 70 000 1000 620 9 72 000 1100 680 表 6 单杆受力下结构优化设计正交试验固定因子表
Table 6. Optimization design orthogonal test fixed factors (single rod)
边界条件 面内支撑杆1
长度比例L11面内支撑杆1
长度L1/mm面内支撑杆2
长度比例L22D端受载 0.5 100 000 0.5 L2/mm 面内支撑
夹角θi/(°)面外支撑
夹角θo/(°)面内支撑杆1
壁厚T1/mm100 000 90 90 28 T2/mm 面外支撑杆管径Do3/mm 面外支撑壁厚T3/mm 28 760 28 表 7 双杆受力下结构优化设计正交试验因素水平表
Table 7. Optimization design orthogonal test factor level (double rod)
序号 面内支撑杆2管径Do2/mm 面内支撑杆1长度比例L11 面内支撑杆1长度L1/mm 拉压比P1/P2 1 200 0.68 110 000 −10 2 300 0.70 120 000 −1 3 400 0.72 125 000 1 4 500 0.74 130 000 3 5 600 0.76 135 000 6 6 700 0.78 140 000 9 7 800 0.80 145 000 12 8 900 0.82 150 000 15 9 1000 0.84 155 000 18 表 8 双杆受力下结构优化设计正交试验固定因子表
Table 8. Optimization design orthogonal test fixed factors (double rod)
边界条件 面外支撑长度
L3/mm面内支撑1管径
Dout1/mm面内支撑2长度比例
L22面内支撑2
长度L2/mmAB端受载 44 000 1370 0.5 100 000 面内支撑夹角θi/(°) 面外支撑
夹角θo/(°)面内支撑1
壁厚T1/mm面内支撑2
壁厚T2/mm面外支撑
管径Do3/mm面外支撑
壁厚T3/mm90 90 28 28 760 28 表 9 单杆受力下结构主体间效应检查表
Table 9. Checklist for structural inter-subject effects (single rod)
因素 自由度 均方 方差齐性检验因子F 显著性因子P L3/mm 8 1.385 0.143 0.997 Do1/mm 8 84.948 8.748 0.000 Do2/mm 8 4498.264 463.230 0.000 误差 55 9.711 − − R2 0.996 − − − 表 10 双杆受力下结构主体间效应检查表
Table 10. Checklist for structural inter-subject effects (double rods)
因素 自由度 均方 方差齐性检验因子F 显著性因子P Do2/mm 8 2908.166 4.837 0.000 L1/mm 8 125.381 0.209 0.988 L11 8 2008.632 3.341 0.004 P1/P2 8 8472.914 14.093 0.000 误差 48 601.215 − − R2 0.862 − − − 表 11 BP神经网络无量纲参数设定表
Table 11. BP neural network parameters
输入变量 面内支撑1内
外径之比L1s面内支撑2内
外径之比L2s面外支撑和面内支撑
长度比L3s范围 0.813~0.949 0.720~0.918 0.560~0.720 输出变量 单杆情况K1(0.7002~0.8439) 输入变量 面内支撑2内外径之比L2s 面内支撑长度比例L4s 拉压比L5s 范围 0.680~0.840 0.720~0.944 −10.0~18.0 输出变量 双杆情况K2(0.6998~0.7771) -
[1] 陆文发. 近海导管架平台[M]. 北京: 海洋出版社, 1992.Lu Wenfa. Offshore jacket platform [M]. Beijing: Ocean Publishing House, 1992. (in Chinese) [2] 陈安龙. 新型抗震导管架力学特性研究[D]. 大连: 大连理工大学, 2020.Chen Anlong. Study on mechanical properties of new anti-seismic jacket [D]. Dalian: Dalian University of Technology, 2020. (in Chinese) [3] 强士中. 桥梁工程[M]. 北京: 高等教育出版社, 2011.Qiang Shizhong. Bridge engineering [M]. Beijing: Higher Education Press, 2011. (in Chinese) [4] 李自林. 桥梁工程[M]. 武汉: 华中科技大学出版社, 2007.Li Zilin. Bridge engineering [M]. Wuhan: Huazhong University of Science and Technology Publishing House, 2007. (in Chinese) [5] 杜柏松, 罗碧荣. 十字交叉吊杆拱桥支座更换顶升方案研究[J]. 公路交通技术, 2012(4): 70 − 73. doi: 10.3969/j.issn.1009-6477.2012.04.016Du Baisong, Luo Birong. Research on jacking plans for replacement of supports of crossing suspender arch bridge [J]. Highway Traffic Technology, 2012(4): 70 − 73. (in Chinese) doi: 10.3969/j.issn.1009-6477.2012.04.016 [6] GB 50906−2013, 机械工业厂房结构设计规范[S]. 北京: 中国建筑工业出版社, 2010.GB 50906−2013, Code for design of machinery industry workshop structures [S]. Beijing: China Architecture Industry Press, 2010. (in Chinese) [7] 郑天厚. 浅谈钢管桁架结构在油田地面建设中的应用[J]. 中国石油和化工标准与质量, 2012, 33(15): 176 − 177. doi: 10.3969/j.issn.1673-4076.2012.15.148Zhen Tianhou. Application of steel tube truss structure in oil field surface construction [J]. Chinese Petroleum and Chemical Standards and Quality, 2012, 33(15): 176 − 177. (in Chinese) doi: 10.3969/j.issn.1673-4076.2012.15.148 [8] GB 50017−2017, 钢结构设计规范[S]. 北京: 中国建筑工业出版社, 2017.GB 50017−2017, Steel structure design code [S]. Beijing: China Architecture Industry Press, 2017. (in Chinese) [9] Jiho Moon, Ki-Yong Yoon, Tong-Seok Han, Hak-Eun Lee. Out-of-plane buckling and design of X-bracing systems with discontinuous diagonals [J]. Journal of Constructional Steel Research, 2008, 64(3): 285 − 294. [10] JGJ 99−2015, 高层民用建筑钢结构技术规程[S]. 北京: 中国建筑工业出版社, 2015.JGJ 99−2015, Technical specification for steel structure of tall building [S]. Beijing: China Architecture Industry Press, 2015. (in Chinese) [11] 陈绍蕃. 塔架交叉斜杆考虑屈曲相关性的稳定承载力[J]. 土木工程学报, 2011, 44(1): 19 − 28.Chen Shaofan. Stability capacity of tower cross-bracings taking account of interaction in buckling [J]. Journal of Civil Engineering, 2011, 44(1): 19 − 28. (in Chinese) [12] DL/T 5154−2002, 架空送电线路杆塔结构设计技术规定 [S]. 北京: 中国电力出版社, 2012.DL/T 5154−2002, Technical code for the design of tower and pole structures of overhead transmission line [S]. Beijing: China Electric Power Press, 2012. (in Chinese) [13] 李雪, 李宏男, 黄连壮. 高压输电线路覆冰倒塔非线性屈曲分析[J]. 振动与冲击, 2009, 28(5): 111 − 114. doi: 10.3969/j.issn.1000-3835.2009.05.025Li Xue, Li Hongnan, Huang Lianzhuang. Nonlinear buckling analysis of collapsed steel tower for 220 kV Guajing Iced transmission line [J]. Journal of Vibration and Shock, 2009, 28(5): 111 − 114. (in Chinese) doi: 10.3969/j.issn.1000-3835.2009.05.025 [14] 成凯, 赵二飞, 周振平, 孙武和. 交叉式桁架臂弦杆单肢屈曲长度系数研究[J]. 工程力学, 2015, 32(6): 215 − 221. doi: 10.6052/j.issn.1000-4750.2013.12.1165Cheng Kai, Zhao Erfei, Zhou Zhenping, Sun Wuhe. Research on chord-buckling-length coefficient of cross-type lattice boom [J]. Engineering Mechanics, 2015, 32(6): 215 − 221. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.12.1165 [15] 李鸿维. 板式连接的中心支撑的计算长度系数研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.Li Hongwei. Study on the effective length factor of concentrically braced member with gusset plate connections [D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese) [16] 关建伟. 输电塔不等边角钢交叉斜材稳定承载力研究 [D]. 重庆: 重庆大学, 2018.Guan Jianwei. Study on stable bearing capacity of X-braced truss structure of unequal-angle steel in transmission tower [D]. Chongqing: Chongqing University, 2018. (in Chinese) [17] 李振眠, 余杨, 余建星, 等. 基于向量有限元的深水管道屈曲行为分析[J]. 工程力学, 2021, 38(4): 247 − 256. doi: 10.6052/j.issn.1000-4750.2020.06.0357Li Zhenmian, Yu Yang, Yu Jianxing, et al. Bucking analysis of deepwater pipelines by vector form intrinsic finite element method [J]. Engineering Mechanics, 2021, 38(4): 247 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0357 [18] 闫龙海. 基于正交试验方法的薄壁压杆截面优化分析 [D]. 哈尔滨: 哈尔滨工业大学, 2009.Yan Longhai. Section optimum anaiysis of thin-walled compressive bar based on orthogonal experimental method [D]. Harbin: Harbin Institute of Technology, 2009. (in Chinese) [19] 张伟, 韩旭, 刘杰, 杨刚. 一种基于正交试验设计的土中爆炸数值模型确认方法[J]. 工程力学, 2013, 30(3): 58 − 65. doi: 10.6052/j.issn.1000-4750.2011.08.0564Zhang Wei, Han Xu, Liu Jie, Yang Gang. A method for model validation of underground explosion based on the orthogonal experimental design [J]. Engineering Mechanics, 2013, 30(3): 58 − 65. (in Chinese) doi: 10.6052/j.issn.1000-4750.2011.08.0564 [20] 吴兆旗, 魏源, 王鑫涛, 姜绍飞. 局部锈蚀圆钢管构件轴压力学性能正交试验研究[J]. 工程力学, 2020, 37(4): 144 − 152. doi: 10.6052/j.issn.1000-4750.2019.06.0327Wu Zhaoqi, Wei Yuan, Wang Xintao, Jiang Shaofei. Orthogonal experimental study on axial mechanical behavior of locally corroded circular steel tubes [J]. Engineering Mechanics, 2020, 37(4): 144 − 152. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.06.0327 [21] 王涛, 翟绪恒, 孟丽岩. 在线自适应神经网络算法及参数鲁棒性分析[J]. 振动与冲击, 2019, 38(8): 210 − 217. doi: 10.13465/j.cnki.jvs.2019.08.032Wang Tao, Zhai Xuhuan, Meng Liyan. An online adaptive neural network algorithm and its parameters robustness analysis [J]. Vibration and Shock, 2019, 38(8): 210 − 217. (in Chinese) doi: 10.13465/j.cnki.jvs.2019.08.032 [22] 姜亚丽, 杨刚, 宋红红. 地震作用下矮塔斜拉桥的动力优化设计[J]. 工程力学, 2020, 37(增刊): 313 − 319. doi: 10.6052/j.issn.1000-4750.2019.04.S060Jiang Yali, Yang Gang, Song Honghong. Dynamic optimization design of extradosed cable-stayed bridge under earthquake excitation [J]. Engineering Mechanics, 2020, 37(Suppl): 313 − 319. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.S060 [23] 赵林鑫, 江守燕, 杜成斌. 基于SBFEM和机器学习的薄板结构缺陷反演[J]. 工程力学, 2021, 38(6): 36 − 46. doi: 10.6052/j.issn.1000-4750.2020.06.0416Zhao Linxin, Jiang Shouyan, Du Chengbin. Flaws detection in thin plate structures based on SBFEM and machine learning [J]. Engineering Mechanics, 2021, 38(6): 36 − 46. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0416 [24] 杜茂林, 王福彦. 医学统计学[M]. 北京: 人民军医出版社, 2015.Du Maolin, Wang Fuyan. Medical statistics [M]. Beijing: People's Military Medical Press, 2015. (in Chinese) -