留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于牛顿迭代算法的大型有面外支撑杆X撑结构的屈曲分析

康元顺 张伟为 刘梦娟 曾晓辉

康元顺, 张伟为, 刘梦娟, 曾晓辉. 基于牛顿迭代算法的大型有面外支撑杆X撑结构的屈曲分析[J]. 工程力学, 2022, 39(S): 286-295. doi: 10.6052/j.issn.1000-4750.2021.05.S053
引用本文: 康元顺, 张伟为, 刘梦娟, 曾晓辉. 基于牛顿迭代算法的大型有面外支撑杆X撑结构的屈曲分析[J]. 工程力学, 2022, 39(S): 286-295. doi: 10.6052/j.issn.1000-4750.2021.05.S053
KANG Yuan-shun, ZHANG Wei-wei, LIU Meng-juan, ZENG Xiao-hui. BUCKLING ANALYSIS OF A LARGE X-SUPPORTED STRUCTURE WITH OUT-OF-PLANE BRACES BASED ON NEWTON'S ITERATION[J]. Engineering Mechanics, 2022, 39(S): 286-295. doi: 10.6052/j.issn.1000-4750.2021.05.S053
Citation: KANG Yuan-shun, ZHANG Wei-wei, LIU Meng-juan, ZENG Xiao-hui. BUCKLING ANALYSIS OF A LARGE X-SUPPORTED STRUCTURE WITH OUT-OF-PLANE BRACES BASED ON NEWTON'S ITERATION[J]. Engineering Mechanics, 2022, 39(S): 286-295. doi: 10.6052/j.issn.1000-4750.2021.05.S053

基于牛顿迭代算法的大型有面外支撑杆X撑结构的屈曲分析

doi: 10.6052/j.issn.1000-4750.2021.05.S053
基金项目: 国家自然科学基金项目(11672306)
详细信息
    作者简介:

    康元顺(1997−),男,贵州人,博士生,主要从事工程力学研究(E-mail: kangyuanshun@imech.ac.cn)

    张伟为(1996−),男,江苏人,博士生,主要从事工程力学研究(E-mail: zhangweiwei@imech.ac.cn)

    刘梦娟(1998−),女,河南人,硕士生,主要从事工程力学研究(E-mail: liumengjuan@imech.ac.cn)

    通讯作者:

    曾晓辉(1972−),男,湖南人,研究员,博士,博导,从事结构动力响应、稳定性和流固耦合领域研究(E-mail: zxh@imech.ac.cn)

  • 中图分类号: TB12

BUCKLING ANALYSIS OF A LARGE X-SUPPORTED STRUCTURE WITH OUT-OF-PLANE BRACES BASED ON NEWTON'S ITERATION

  • 摘要: 该文从理论分析和数值计算的角度研究了一种有面外支撑的X支撑系统的稳定性问题,提出了一种简单高效的计算方法,这种X支撑的两条支撑对角线的交点处连接了一个面外撑杆。考虑有面外撑杆的非对称交叉支撑体系在一般情况下的弹性屈曲,即不同长度、截面和载荷的连续对角,面外撑杆与X支撑平面可以有不同角度,并且X支撑的交叉点不固定在跨中。建立了两端固接的双跨受压杆件跨中任意线弹性的特征值矩阵,利用迭代算法进行屈曲载荷计算,详述了新型X支撑系统的屈曲荷载理论计算方法。推导了两端固接的双跨受拉(压)杆件跨中任意位置处的转动刚度计算公式,并通过数值计算讨论了不同受力形式转动刚度对X支撑的屈曲长度系数的影响,阐释了在实际结构中转动刚度对屈曲载荷的影响可忽略。进行比例加载屈曲分析,分析的目的是建立受压杆件的有效长度因子与压缩杆件和拉伸杆件的力比之间的关系。得到了任意位置处的非对称交叉支撑系统有效长度因子的数值解,并通过已有文献的退化结果验证了其有效性。结合工程实际,给出了屈曲长度系数的理论推荐值。
  • 图  1  带面外支撑的交叉系统

    Figure  1.  Cross system with out-of-plane support

    图  2  压缩杆AB的屈曲形状

    Figure  2.  Buckling shape of compression rod AB

    图  3  连续压缩杆件的分析模型

    Figure  3.  Analytical model for continuous compression members

    图  4  与数值结果和实验结果的对比

    Figure  4.  Comparison between numerical and experimental results

    图  5  转动刚度计算模型

    Figure  5.  Rotational stiffness calculation model

    图  6  不同受力条件下X撑交点位置与弹性刚度因子的关系

    Figure  6.  The relationship between the position of the X brace intersection and the elastic stiffness factor under different stress conditions

    图  7  弹性支点的位置与屈曲长度系数的关系

    Figure  7.  The relationship between the position of the elastic fulcrum and the buckling length factor

    图  8  不同转动刚度对屈曲载荷的影响

    Figure  8.  Effect of different rotational stiffness on buckling load

    图  9  与数值结果进行对比

    Figure  9.  Compare with numerical results

    图  10  跨中无量纲因子与屈曲长度系数的关系

    Figure  10.  Relationship between dimensionless factor in midspan and buckling length factor

    图  11  不同支承刚度时拉压比与屈曲长度系数的关系

    Figure  11.  Relationship between tension-compression ratio and buckling length coefficient with different bearing stiffness

  • [1] 王永海, 郭彦林. 十字型刚架中轴压柱面外稳定性设计方法研究[J]. 工程力学, 2011, 28(5): 54 − 63.

    Wang Yonghai, Guo Yanlin. Out-plane buckling behavior and design method of axial loaded column in the cross-frame [J]. Engineering Mechanics, 2011, 28(5): 54 − 63. (in Chinese)
    [2] Chen Y, Hu Z, Guo Y, et al. Ultimate bearing capacity of CHS X-joints stiffened with external ring stiffeners and gusset plates subjected to brace compression [J]. Engineering Structures, 2019, 181: 76 − 88.
    [3] Attia W A, Irheem M M M. Boundary condition effect on response modification factor of X-braced steel frames [J]. HBRC Journal, 2019, 14(1): 104 − 121. doi: 10.1016/j.hbrcj.2016.03.002
    [4] 姜亚丽, 杨刚, 宋红红. 地震作用下矮塔斜拉桥的动力优化设计[J]. 工程力学, 2020, 37(增刊 1): 313 − 319. doi: 10.6052/j.issn.1000-4750.2019.04.S060

    Jiang Yali, Yang Gang, Song Honghong. Dynamic optimization design of short tower cable-stayed bridges under seismic effects [J]. Engineering Mechanics, 2020, 37(Suppl 1): 313 − 319. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.S060
    [5] Vacharajittiphan P, Trahair N S. Direct stiffness analysis of lateral buckling [J]. Journal of Structural Mechanics, 2007, 3(2): 107 − 137.
    [6] 李振眠, 余杨, 余建星, 等. 基于向量有限元的深水管道屈曲行为分析[J]. 工程力学, 2021, 38(4): 247 − 256. doi: 10.6052/j.issn.1000-4750.2020.06.0357

    Li Zhenmian, Yu Yang, Yu Jianxing, et al. Analysis of flexural behavior of deepwater pipelines based on vector finite elements [J]. Engineering Mechanics, 2021, 38(4): 247 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0357
    [7] Stoman S H. Effective length spectra for cross bracings [J]. Journal of Structural Engineering, 1989, 115(12): 3112 − 3122. doi: 10.1061/(ASCE)0733-9445(1989)115:12(3112)
    [8] Andre Picard, Denis Beaulieu. Theoretical study of the buckling strength of compression members connected to coplanar tension members [J]. Canadian Journal of Civil Engineering, 1988, 16(3): 239 − 248. doi: 10.1139/l89-049
    [9] Thevendran V, Wang C M. Stability of nonsymmetric cross-bracing systems [J]. Journal of Structural Engineering, 1993, 119(1): 169 − 180. doi: 10.1061/(asce)0733-9445(1993)119:1(169)
    [10] Davaran A, Gélinas A, Tremblay R. Inelastic buckling analysis of steel x-bracing with bolted single shear lap connections [J]. Journal of Structural Engineering, 2014, 141(8): 04014204. doi: 10.1061/(ASCE)ST.1943-541X.0001141
    [11] Chen Y, Guo Y, Hai-Wei X U. Effective length factor of a non-symmetrical cross-bracing system with a discontinuous diagonal [J]. Journal of Zhejiang University-Science, 2019, 20(8): 590 − 600.
    [12] Davaran A. Effective length factor for discontinuous x-bracing systems [J]. Journal of Engineering Mechanics, 2001, 127(2): 106 − 112. doi: 10.1061/(ASCE)0733-9399(2001)127:2(106)
    [13] Moon J, Yoon K Y, Han T S, et al. Out-of-plane buckling and design of X-bracing systems with discontinuous diagonals [J]. Journal of Constructional Steel Research, 2008, 64(3): 285 − 294. doi: 10.1016/j.jcsr.2007.07.008
    [14] Libove C. Buckling of a compression member in a rigid-joint truss. I-Equalend restraints [J]. Journal of Aircraft, 1966, 3(4): 347 − 353. doi: 10.2514/3.43745
    [15] Murray N W. A method of determining an approximate value of the critical loads at which lateral buckling occurs in rigidly jointed trusses [J]. Proceedings of the Institution of Civil Engineers, 1957, 7(2): 387 − 403. doi: 10.1680/iicep.1957.2574
    [16] Segal F, Levy R, Rutenberg A. Design of imperfect cross-bracings [J]. Journal of Engineering Mechanics, 1994, 120(5): 1057 − 1075. doi: 10.1061/(ASCE)0733-9399(1994)120:5(1057)
    [17] Davaran A, Hoveidae N. Effect of mid-connection detail on the behavior of x-bracing systems [J]. Journal of Constructional Steel Research, 2009, 65(4): 985 − 990. doi: 10.1016/j.jcsr.2008.11.005
    [18] Chen Y, McFarland D M, Spencer B F, et al. Exact solution of free vibration of a uniform tensioned beam combined with both lateral and rotational linear sub-systems [J]. Journal of Sound and Vibration, 2015, 341: 206 − 212.
    [19] 陆文发. 近海导管架平台[M]. 北京: 海洋出版社, 1992.

    Lu Wenfa. Offshore jacket platform [M]. Beijing: Ocean Publishing House, 1992. (in Chinese)
    [20] 陈绍蕃. 塔架交叉斜杆考虑屈曲相关性的稳定承载力[J]. 土木工程学报, 2011, 44(1): 19 − 28.

    Chen Shaofan. Stability capacity of tower cross-bracings taking account of interaction in buckling [J]. Journal of Civil Engineering, 2011, 44(1): 19 − 28. (in Chinese)
    [21] 吴兆旗, 魏源, 王鑫涛, 等. 局部锈蚀圆钢管构件轴压力学性能正交试验研究[J]. 工程力学, 2020, 37(4): 144 − 152. doi: 10.6052/j.issn.1000-4750.2019.06.0327

    Wu Zhaoqi, Wei Yuan, Wang Xintao, et al. Orthogonal experimental study on the axial compression mechanical properties of locally rusted round steel pipe members [J]. Engineering Mechanics, 2020, 37(4): 144 − 152. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.06.0327
    [22] 赵林鑫, 江守燕, 杜成斌. 基于SBFEM和机器学习的薄板结构缺陷反演[J]. 工程力学, 2021, 38(6): 36 − 46. doi: 10.6052/j.issn.1000-4750.2020.06.0416

    Zhao Linxin, Jiang Shouyan, Du Chengbin. Inversion of structural defects in thin plates based on SBFEM and machine learning [J]. Engineering Mechanics, 2021, 38(6): 36 − 46. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0416
  • 加载中
图(11)
计量
  • 文章访问数:  65
  • HTML全文浏览量:  14
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-30
  • 修回日期:  2022-02-23
  • 网络出版日期:  2022-03-23
  • 刊出日期:  2022-06-06

目录

    /

    返回文章
    返回