留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维负泊松比星型结构冲击动力学研究

杨泽水 薛玉祥 刘爱荣

杨泽水, 薛玉祥, 刘爱荣. 三维负泊松比星型结构冲击动力学研究[J]. 工程力学, 2022, 39(S): 356-363. doi: 10.6052/j.issn.1000-4750.2021.05.S057
引用本文: 杨泽水, 薛玉祥, 刘爱荣. 三维负泊松比星型结构冲击动力学研究[J]. 工程力学, 2022, 39(S): 356-363. doi: 10.6052/j.issn.1000-4750.2021.05.S057
YANG Ze-shui, XUE Yu-xiang, LIU Ai-rong. STUDY ON THE IMPACT DYNAMICS OF THREE-DIMENSIONAL STAR-SHAPED STRUCTURE WITH NEGATIVE POISSON’S RATIO[J]. Engineering Mechanics, 2022, 39(S): 356-363. doi: 10.6052/j.issn.1000-4750.2021.05.S057
Citation: YANG Ze-shui, XUE Yu-xiang, LIU Ai-rong. STUDY ON THE IMPACT DYNAMICS OF THREE-DIMENSIONAL STAR-SHAPED STRUCTURE WITH NEGATIVE POISSON’S RATIO[J]. Engineering Mechanics, 2022, 39(S): 356-363. doi: 10.6052/j.issn.1000-4750.2021.05.S057

三维负泊松比星型结构冲击动力学研究

doi: 10.6052/j.issn.1000-4750.2021.05.S057
基金项目: 国家自然科学基金面上项目(51878188),高等学校学科创新引智计划项目(111计划 D21021);广州市科技计划项目(20212200004);中国工程院战略咨询重点项目(2021-XZ-37)
详细信息
    作者简介:

    杨泽水 (1997−),男,广东人,硕士生,主要从事材料抗冲击性研究( E-mail: 2422038681@qq.com)

    薛玉祥 (1995−),男,广东人,硕士生,主要从事材料抗冲击性研究( E-mail: 136985860@qq.com)

    通讯作者:

    刘爱荣 (1972−),女,山西人,教授,博士,博导,主要从事新型桥梁结构的静动力稳定性研究(E-mail: liuar@gzhu.edu.cn)

  • 中图分类号: TB34

STUDY ON THE IMPACT DYNAMICS OF THREE-DIMENSIONAL STAR-SHAPED STRUCTURE WITH NEGATIVE POISSON’S RATIO

  • 摘要: 在传统二维负泊松比星型结构基础上延展,提出了一种新型三维负泊松比星型结构。三维负泊松比星型结构具有质量更轻、材料利用率更高、抗冲击性能强和实用性强等优点。通过冲击试验和有限元模拟,对其在不同冲击速度下的变形行为模式和力学响应、及在不同设计角度下的吸能特性和抗冲击性能进行了深入的研究。结果表明:三维负泊松比星型结构在冲击过程中的力学响应可大致分为应力上升阶段、应力平台阶段、平台应力增强阶段和密实阶段,并且随着冲击速度和设计角度的增大,模型的平台应力和单位质量吸能随之增大,其中40°模型在冲击过程中具有“米”字型效应,能够较大提高结构的抗冲击性。
  • 图  1  二维和三维负泊松比星型胞元对比图

    Figure  1.  Comparison of 2D and 3D star cells with negative Poisson's ratio

    图  2  TC4的本构关系图

    Figure  2.  Constitutive relation diagram of TC4

    图  3  不同冲击速度试验模型

    Figure  3.  Experimental models of different impact velocities

    图  4  有限元模型与试验模型单位质量吸能对比

    Figure  4.  Comparison of energy absorption per unit mass between finite element model and experiment

    图  5  四种模型不同速度下变形模式

    Figure  5.  Deformation modes of four models at different velocities

    图  6  四种角度模型力学响应与平台应力

    Figure  6.  Mechanical response and platform stress of four angle models

    图  7  四种模型单位质量吸能

    Figure  7.  Energy absorption per unit mass of four models

  • [1] Whitty J, Alderson A, Myler P, et al. Towards the design of sandwich panel composites with enhanced mechanical and thermal properties by variation of the in-plane Poisson’s ratios [J]. Composites Part A Applied Science & Manufacturing, 2003, 34(6): 525 − 534.
    [2] Pozniak A A, Kaminski H, Kedziora P, et al. Anomalous deformation of constrained auxetic square [J]. Reviews on Advanced Material Science, 2010, 23(2): 169 − 174.
    [3] Lim T C. Auxetic materials and structures [J]. Springer Singapore, 2015: 2014954600. doi: 10.1007/978-981-287-275-3
    [4] Yu X, Zhou J, Liang H, et al. Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review [J]. Progress in Materials Science, 2018, 94: 114 − 173.
    [5] 江坤, 陶猛. 六韧带手性蜂窝结构覆盖层的动态压缩行为研究[J]. 舰船科学技术, 2017, 39(19): 55 − 60.

    Jiang Kun, Tao Meng. Study on dynamic compression behavior of chiral honeycomb covering with six ligaments [J]. Ship Science and Technology, 2017, 39(19): 55 − 60. (in Chinese)
    [6] Yang W, Li Z M, Shi W, et al. Review on auxetic materials [J]. Journal of Materials Science, 2004, 39(10): 3269 − 3279. doi: 10.1023/B:JMSC.0000026928.93231.e0
    [7] 李竞, 王宇, 吴红枚,等. 具有负泊松比材料的研究进展[J]. 江西化工, 2016(1): 69 − 73. doi: 10.3969/j.issn.1008-3103.2016.01.021

    Li Jing, Wang Yu, Wu Hongmei, et al. Research progress of materials with negative Poisson's ratio [J]. Jiangxi Chemical Industry, 2016(1): 69 − 73. (in Chinese) doi: 10.3969/j.issn.1008-3103.2016.01.021
    [8] Hou Y, Tai Y H, Lira C, et al. The bending and failure of sandwich structures with auxetic gradient cellular cores [J]. Composites Part A Applied Science & Manufacturing, 2013, 49(3): 119 − 131.
    [9] Thill C, Etches J, Bond I, et al. Morphing skins [J]. Aeronautical Journal, 2008, 112(1129): 117 − 139. doi: 10.1017/S0001924000002062
    [10] Evans K E. Auxetic polymers: A new range of materials [J]. Endeavour, 1991, 15(4): 170 − 174. doi: 10.1016/0160-9327(91)90123-S
    [11] Masters I G, Evans K E. Models for the elastic deformation of honeycombs [J]. Composite Structures, 1996, 35(4): 403 − 422. doi: 10.1016/S0263-8223(96)00054-2
    [12] Martin J, Heyder-bruckner J, Remillat C, et al. The hexachiral prismatic wingbox concept [J]. Physica Status Solidi (B), 2008, 245(3): 570 − 577. doi: 10.1002/pssb.200777709
    [13] Spadoni A, Ruzzene M, Scarpa F. Dynamic response of chiral truss-core assemblies [J]. Journal of Intelligent Material Systems & Structures, 2006, 17(11): 941 − 952.
    [14] Almgren R F. An isotropic three-dimensional structure with Poisson’s ratio=−1 [J]. Journal of Elasticity, 1985, 15(4): 427 − 430. doi: 10.1007/BF00042531
    [15] 韩会龙, 张新春. 星形节点周期性蜂窝结构的面内动力学响应特性研究[J]. 振动与冲击, 2017, 36(23): 223 − 231.

    Han Huilong, Zhang Xinchun. In plane dynamic response characteristics of periodic honeycomb structure with star joints [J]. Vibration and Impact, 2017, 36(23): 223 − 231. (in Chinese)
    [16] Larsen U, Signund O, Bouwsta S. Design and fabrication of compliant micro-mechanisms and structures with negative Poisson’s ratio [J]. Journal of Microelectromechanical Systems, 1997, 6(2): 99 − 106. doi: 10.1109/84.585787
    [17] 秦浩星, 杨德庆. 任意负泊松比超材料结构设计的功能基元拓扑优化法[J]. 复合材料学报, 2018, 35(4): 288 − 297.

    Qin Haoxing, Yang Deqing. Functional element topology optimization method for structural design of metamaterials with arbitrary negative Poisson's ratio [J]. Journal of Composite Materials, 2018, 35(4): 288 − 297. (in Chinese)
    [18] 尤泽华, 肖俊华. 弧边内凹蜂窝负泊松比结构的面内冲击动力学数值研究[J]. 工程力学. doi: 10.6052/j.issn.1000-4750.2021.07.0572.

    You Zehua, Xiao Junhua. Numerical study on in-plane impact dynamics of concave honeycomb structure with negative Poisson's ratio [J]. Engineering Mechanics. doi: 10.6052/j.issn.1000-4750.2021.07.0572. (in Chinese)
    [19] 吉美娟, 郭彦峰, 付云岗, 等. 纸瓦楞-蜂窝复合夹层结构的跌落冲击缓冲性能研究[J]. 工程力学, 2020, 37(10): 247 − 256. doi: 10.6052/j.issn.1000-4750.2019.11.0668

    Ji Meijuan, Guo Yanfeng, Fu Yungang, et al [J]. Study on drop impact cushioning performance of paper corrugated honeycomb composite sandwich structure [J]. Engineering Mechanics, 2020, 37(10): 247 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.11.0668
    [20] 朱翔, 尹曜, 王蕊, 等. 泡沫铝填充薄壁铝合金多胞构件与单胞构件吸能性能研究[J]. 工程力学, 2021, 38(5): 247 − 256. doi: 10.6052/j.issn.1000-4750.2020.06.0428

    Zhu Xiang, Yin Yao, Wang Rui, et al. Energy absorption properties of aluminum alloy filled cellular aluminum alloy members and single cell components filled with aluminum foam [J]. Engineering Mechanics, 2021, 38(5): 247 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0428
    [21] Tan P J, Reid S R, Harrigan J J, et al. Dynamic compressive strength properties of aluminum foams. Part I-experimental data and observations [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2174 − 2205. doi: 10.1016/j.jmps.2005.05.007
  • 加载中
图(7)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  19
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-29
  • 修回日期:  2022-04-07
  • 网络出版日期:  2022-05-06
  • 刊出日期:  2022-06-06

目录

    /

    返回文章
    返回