PIEZOELECTRIC ANALYSIS OF ARCH VIBRATION ENERGY HARVESTER UNDER CYCLIC LOADING
-
摘要: 能源需求的不断增加以及环境问题的日益凸显迫使人们在环境中寻求清洁能源。该文提出了一种新型拱式能量采集器,能有效利用波浪的振动能量。从拱式振动能量采集器的工作原理分析能量采集的可行性,采用Comsol建立了拱式能量采集器的有限元计算模型,分析周期荷载作用幅值、激励频率、负载电阻、压电片位置和基础层材料等参数对能量采集器压电性能的影响,确定采集器的最优设计参数。Abstract: The increasing demand for energy and the increasingly prominent environmental problems force people to seek clean energy in the environment. Presents a new arch energy harvester which can effectively utilize the vibration energy of waves. The feasibility of the arch vibration energy collector is analyzed from its working principle, and the calculation model of the harvester is established by Comsol, and the influences of cyclic loading action amplitude, excitation frequency, load resistance, piezoelectric position and base layer material on the piezoelectric performance of the harvester are analyzed to determine the optimal parameters of the harvester.
-
Key words:
- arch /
- cyclic loading /
- wave energy /
- piezoelectric /
- energy harvester
-
表 1 基础层与压电片几何与材料参数
Table 1. Base layer and piezoelectric element geometry and material parameters
结构参数 参数值 基础层质量密度$ \rho $/(kg/m3) 7850 基础层弹性模量E/GPa 200 基础层泊松比ν 0.3 基础层截面宽b/mm 30 基础层截面高h/mm 1 悬臂梁长/圆弧长S/mm 240 压电片质量密度$ \rho $/(kg/m3) 7750 压电片宽bp/mm 30 压电片高hp/mm 1 压电片长Lp/mm 20 -
[1] Yang Jue, Zhang Chengyang, Li Xinrong, et al. Integration of wireless sensor networks in environmental monitoring cyber infrastructure [J]. Journal of Wireless Networks, 2010, 16(4): 1091 − 1108. doi: 10.1007/s11276-009-0190-1 [2] Soga Kenichi, Schooling Jennifer. Infrastructure sensing [J]. Journal of Interface Focus, 2016, 6(4): 20160023. doi: 10.1098/rsfs.2016.0023 [3] Frank Stajano, Neil Hoult, Ian Wassell, et al. Smart bridges, smart tunnels: Transforming wireless sensor networks from research prototypes into robust engineering infrastructure [J]. Journal of Ad Hoc Networks, 2010, 8(8): 872 − 888. doi: 10.1016/j.adhoc.2010.04.002 [4] Qiu Shouqiang, Liu Kun, Wang Dongjiao, et al. A comprehensive review of ocean wave energy research and development in China [J]. Journal of Renewable and Sustainable Energy Reviews, 2019, 113: 109271. doi: 10.1016/j.rser.2019.109271 [5] Zhang Yongxing, Zhao Yongjie, Sun Wei, et al. Ocean wave energy converters: Technical principle, device realization and performance evaluation [J]. Renew-able and Sustainable Energy Reviews, 2021, 141: 1 − 20. doi: 10.1016/j.rser.2021.110764 [6] Wu S, Liu Y, Qin J. Experimental analyses of two-body wave energy converters with hydraulic power takeoff damping in regular and irregular waves [J]. IET Renewable Power Generation, 2021, 20: 1 − 11. [7] Liu Yijin, Li Ye, He Fenglan, et al. Comparison study of tidal stream and wave energy technology development between China and some Western countries [J]. Renewable and Sustainable Energy Reviews, 2017, 76(17): 701 − 716. [8] Emre O, Ismail H. Control, power and electrical components in wave energy conversion systems: A review of the technologies [J]. Renewable and Sustainable Energy Reviews, 2017, 67(17): 106 − 115. [9] Rusu L, Onea F. The performance of some state-of-the-art wave energy converters in locations with the worldwide highest wave power [J]. Renewable and Sustainable Energy Reviews, 2017, 75(17): 1348 − 1362. [10] Aderinto T, Li H. Ocean wave energy converters: Status and challenges [J]. Energies, 2018, 11(5): 1250 − 1275. doi: 10.3390/en11051250 [11] Takao M, Setoguchi T. Air turbines for wave energy conversion [J]. Energy Conversion Management, 2012, 47: 1 − 10. [12] Falcao A, Henriques J. Oscillating-water-column wave energy converters and air turbines: a review [J]. Renewable Energy, 2016, 85(16): 1391 − 1424. [13] 刘延俊, 贺彤彤. 波浪能利用发展历史与关键技术[J]. 海洋技术学报, 2017, 36(4): 76 − 81.Liu Yanjun, He Tongtong. Wave energy utilization: History of development and key technologies [J]. Journal of Ocean Technology, 2017, 36(4): 76 − 81. (in Chinese) [14] 刘涛, 汪超, 刘庆运, 等. 基于等几何方法的压电功能梯度板动力学及主动振动控制分析[J]. 工程力学, 2020, 37(12): 228 − 242. doi: 10.6052/j.issn.1000-4750.2020.04.0266Liu Tao, Wang Chao, Liu Qingyun, et al. Analysis f or dynamic and active vibration control of piezoelect ric functionally graded plates based on isogeometric method [J]. Engineering Mechanics, 2020, 37(12): 228 − 242. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0266 [15] 谢军, 李星, 汪文帅. 功能梯度压电压磁圆柱轴对称的静力学响应[J]. 工程力学, 2021, 38(11): 229 − 239. doi: 10.6052/j.issn.1000-4750.2020.10.0754Xie Jun, Li Xing, Wang Wenshuai. The static response of an axisymmetric functionally graded piezoelect ric/piezomagnetric cylinder [J]. Engineering Mechanics, 2021, 38(11): 229 − 239. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.10.0754 [16] Wu Nan, He Yuncheng, Fu Jiyang. Bistable energy harvester using easy snap-through performance to increase output power [J]. Journal of Energy, 2021, 226: 120414. doi: 10.1016/j.energy.2021.120414 [17] Ma Tianbing, Ding Yongjing, Wu Xiaodong, et al. Research on piezoelectric vibration energy harvester with variable section circular beam [J]. Journal of Low Frequency Noise, Vibration and Active Control, 2021, 40(2): 753 − 771. doi: 10.1177/1461348420918408 [18] 王海, 史宁, 张丽, 等. 折叠梁式振动能量采集器的设计[J]. 传感技术学报, 2020, 33(9): 1246 − 1253.Wang Hai, Shi Ning, Zhang Li, et al. Design of energy harvester based on folded beams [J]. Chinese Journal of Sensors and Actuators, 2020, 33(9): 1246 − 1253. (in Chinese) -