留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期荷载作用下拱式振动能量采集器的压电分析

董可杰 刘爱荣 唐浩 杨智诚

董可杰, 刘爱荣, 唐浩, 杨智诚. 周期荷载作用下拱式振动能量采集器的压电分析[J]. 工程力学, 2022, 39(S): 364-369. doi: 10.6052/j.issn.1000-4750.2021.05.S061
引用本文: 董可杰, 刘爱荣, 唐浩, 杨智诚. 周期荷载作用下拱式振动能量采集器的压电分析[J]. 工程力学, 2022, 39(S): 364-369. doi: 10.6052/j.issn.1000-4750.2021.05.S061
DONG Ke-jie, LIU Ai-rong, TANG Hao, YANG Zhi-cheng. PIEZOELECTRIC ANALYSIS OF ARCH VIBRATION ENERGY HARVESTER UNDER CYCLIC LOADING[J]. Engineering Mechanics, 2022, 39(S): 364-369. doi: 10.6052/j.issn.1000-4750.2021.05.S061
Citation: DONG Ke-jie, LIU Ai-rong, TANG Hao, YANG Zhi-cheng. PIEZOELECTRIC ANALYSIS OF ARCH VIBRATION ENERGY HARVESTER UNDER CYCLIC LOADING[J]. Engineering Mechanics, 2022, 39(S): 364-369. doi: 10.6052/j.issn.1000-4750.2021.05.S061

周期荷载作用下拱式振动能量采集器的压电分析

doi: 10.6052/j.issn.1000-4750.2021.05.S061
基金项目: 国家自然科学基金项目(51878188);高等学校学科创新引智计划项目(111计划 D21021);广州市科技计划项目(20212200004);中国工程院战略咨询重点项目(2021-XZ-37)
详细信息
    作者简介:

    董可杰(1997−),男,广东人,硕士生,主要从事拱式振动能量采集器研究(E-mail: dongkejie97@163.com)

    唐 浩(1998−),男,湖南人,硕士生,主要从事功能梯度材料拱参数共振稳定性研究(E-mail: 2111916034@e.gzhu.edu.cn)

    杨智诚(1992−),男,广东人,副教授,博士,主要从事复合材料与智能结构稳定性研究(E-mail: zhicheng.yang@zhku.edu.cn)

    通讯作者:

    刘爱荣(1972−),女,山西人,教授,博士,主任,主要从事新型桥梁结构的静动力稳定性研究(E-mail: liuar@gzhu.edu.cn)

  • 中图分类号: TM619

PIEZOELECTRIC ANALYSIS OF ARCH VIBRATION ENERGY HARVESTER UNDER CYCLIC LOADING

  • 摘要: 能源需求的不断增加以及环境问题的日益凸显迫使人们在环境中寻求清洁能源。该文提出了一种新型拱式能量采集器,能有效利用波浪的振动能量。从拱式振动能量采集器的工作原理分析能量采集的可行性,采用Comsol建立了拱式能量采集器的有限元计算模型,分析周期荷载作用幅值、激励频率、负载电阻、压电片位置和基础层材料等参数对能量采集器压电性能的影响,确定采集器的最优设计参数。
  • 图  1  拱式振动能量采集器结构示意图

    Figure  1.  Arch vibration energy harvester structure diagram

    图  2  拱式振动能量采集器有限元模型和非线性跳跃变形

    Figure  2.  Finite element model and nonlinear jump deformation of arch vibration energy harvester

    图  3  拱式振动能量采集器瞬时输出电压

    Figure  3.  Instantaneous output voltage of arch vibration energy harvester

    图  4  不同周期荷载作用幅值下采集器的有效输出电压

    Figure  4.  Effective output voltage of the collector under different displacement amplitudes of different periods

    图  5  不同荷载频率下采集器的有效输出电压

    Figure  5.  Effective output voltage of harvester at different load frequencies

    图  6  不同负载电阻下的压电性能

    Figure  6.  Piezoelectric properties under different load resistances

    图  7  不同压电片位置的采集器瞬时输出电压

    Figure  7.  Instantaneous output voltage of collector at different piezoelectric plate positions

    图  8  基于不同材料基础层采集器的瞬时输出电压

    Figure  8.  Instantaneous output voltage of collectors based on different material base layers

    表  1  基础层与压电片几何与材料参数

    Table  1.   Base layer and piezoelectric element geometry and material parameters

    结构参数参数值
    基础层质量密度$ \rho $/(kg/m3)7850
    基础层弹性模量E/GPa200
    基础层泊松比ν0.3
    基础层截面宽b/mm30
    基础层截面高h/mm1
    悬臂梁长/圆弧长S/mm240
    压电片质量密度$ \rho $/(kg/m3)7750
    压电片宽bp/mm30
    压电片高hp/mm1
    压电片长Lp/mm20
    下载: 导出CSV
  • [1] Yang Jue, Zhang Chengyang, Li Xinrong, et al. Integration of wireless sensor networks in environmental monitoring cyber infrastructure [J]. Journal of Wireless Networks, 2010, 16(4): 1091 − 1108. doi: 10.1007/s11276-009-0190-1
    [2] Soga Kenichi, Schooling Jennifer. Infrastructure sensing [J]. Journal of Interface Focus, 2016, 6(4): 20160023. doi: 10.1098/rsfs.2016.0023
    [3] Frank Stajano, Neil Hoult, Ian Wassell, et al. Smart bridges, smart tunnels: Transforming wireless sensor networks from research prototypes into robust engineering infrastructure [J]. Journal of Ad Hoc Networks, 2010, 8(8): 872 − 888. doi: 10.1016/j.adhoc.2010.04.002
    [4] Qiu Shouqiang, Liu Kun, Wang Dongjiao, et al. A comprehensive review of ocean wave energy research and development in China [J]. Journal of Renewable and Sustainable Energy Reviews, 2019, 113: 109271. doi: 10.1016/j.rser.2019.109271
    [5] Zhang Yongxing, Zhao Yongjie, Sun Wei, et al. Ocean wave energy converters: Technical principle, device realization and performance evaluation [J]. Renew-able and Sustainable Energy Reviews, 2021, 141: 1 − 20. doi: 10.1016/j.rser.2021.110764
    [6] Wu S, Liu Y, Qin J. Experimental analyses of two-body wave energy converters with hydraulic power takeoff damping in regular and irregular waves [J]. IET Renewable Power Generation, 2021, 20: 1 − 11.
    [7] Liu Yijin, Li Ye, He Fenglan, et al. Comparison study of tidal stream and wave energy technology development between China and some Western countries [J]. Renewable and Sustainable Energy Reviews, 2017, 76(17): 701 − 716.
    [8] Emre O, Ismail H. Control, power and electrical components in wave energy conversion systems: A review of the technologies [J]. Renewable and Sustainable Energy Reviews, 2017, 67(17): 106 − 115.
    [9] Rusu L, Onea F. The performance of some state-of-the-art wave energy converters in locations with the worldwide highest wave power [J]. Renewable and Sustainable Energy Reviews, 2017, 75(17): 1348 − 1362.
    [10] Aderinto T, Li H. Ocean wave energy converters: Status and challenges [J]. Energies, 2018, 11(5): 1250 − 1275. doi: 10.3390/en11051250
    [11] Takao M, Setoguchi T. Air turbines for wave energy conversion [J]. Energy Conversion Management, 2012, 47: 1 − 10.
    [12] Falcao A, Henriques J. Oscillating-water-column wave energy converters and air turbines: a review [J]. Renewable Energy, 2016, 85(16): 1391 − 1424.
    [13] 刘延俊, 贺彤彤. 波浪能利用发展历史与关键技术[J]. 海洋技术学报, 2017, 36(4): 76 − 81.

    Liu Yanjun, He Tongtong. Wave energy utilization: History of development and key technologies [J]. Journal of Ocean Technology, 2017, 36(4): 76 − 81. (in Chinese)
    [14] 刘涛, 汪超, 刘庆运, 等. 基于等几何方法的压电功能梯度板动力学及主动振动控制分析[J]. 工程力学, 2020, 37(12): 228 − 242. doi: 10.6052/j.issn.1000-4750.2020.04.0266

    Liu Tao, Wang Chao, Liu Qingyun, et al. Analysis f or dynamic and active vibration control of piezoelect ric functionally graded plates based on isogeometric method [J]. Engineering Mechanics, 2020, 37(12): 228 − 242. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0266
    [15] 谢军, 李星, 汪文帅. 功能梯度压电压磁圆柱轴对称的静力学响应[J]. 工程力学, 2021, 38(11): 229 − 239. doi: 10.6052/j.issn.1000-4750.2020.10.0754

    Xie Jun, Li Xing, Wang Wenshuai. The static response of an axisymmetric functionally graded piezoelect ric/piezomagnetric cylinder [J]. Engineering Mechanics, 2021, 38(11): 229 − 239. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.10.0754
    [16] Wu Nan, He Yuncheng, Fu Jiyang. Bistable energy harvester using easy snap-through performance to increase output power [J]. Journal of Energy, 2021, 226: 120414. doi: 10.1016/j.energy.2021.120414
    [17] Ma Tianbing, Ding Yongjing, Wu Xiaodong, et al. Research on piezoelectric vibration energy harvester with variable section circular beam [J]. Journal of Low Frequency Noise, Vibration and Active Control, 2021, 40(2): 753 − 771. doi: 10.1177/1461348420918408
    [18] 王海, 史宁, 张丽, 等. 折叠梁式振动能量采集器的设计[J]. 传感技术学报, 2020, 33(9): 1246 − 1253.

    Wang Hai, Shi Ning, Zhang Li, et al. Design of energy harvester based on folded beams [J]. Chinese Journal of Sensors and Actuators, 2020, 33(9): 1246 − 1253. (in Chinese)
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  14
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-29
  • 修回日期:  2022-04-07
  • 网络出版日期:  2022-05-05
  • 刊出日期:  2022-06-06

目录

    /

    返回文章
    返回