留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型可展与折叠结构研究进展

蔡建国 王玉涛

蔡建国, 王玉涛. 新型可展与折叠结构研究进展[J]. 工程力学, 2022, 39(S): 1-8. doi: 10.6052/j.issn.1000-4750.2021.05.S062
引用本文: 蔡建国, 王玉涛. 新型可展与折叠结构研究进展[J]. 工程力学, 2022, 39(S): 1-8. doi: 10.6052/j.issn.1000-4750.2021.05.S062
CAI Jian-guo, WANG Yu-tao. NOVEL DEVELOPABLE AND FOLDABLE STRUCTURES[J]. Engineering Mechanics, 2022, 39(S): 1-8. doi: 10.6052/j.issn.1000-4750.2021.05.S062
Citation: CAI Jian-guo, WANG Yu-tao. NOVEL DEVELOPABLE AND FOLDABLE STRUCTURES[J]. Engineering Mechanics, 2022, 39(S): 1-8. doi: 10.6052/j.issn.1000-4750.2021.05.S062

新型可展与折叠结构研究进展

doi: 10.6052/j.issn.1000-4750.2021.05.S062
基金项目: 国家自然科学基金项目(51822805,51878147,U1937202)
详细信息
    作者简介:

    王玉涛(1992−),男,山东烟台人,博士生,主要从事新型可展与折叠结构研究(E-mail: wangyutao@seu.edu.cn)

    通讯作者:

    蔡建国(1984−),男,江苏靖江人,教授,博士,主要从事新型可展与折叠结构研究(E-mail: j.cai@seu.edu.cn)

  • 中图分类号: TU399

NOVEL DEVELOPABLE AND FOLDABLE STRUCTURES

  • 摘要: 可展与折叠结构是一类可以自由地大尺度改变几何构形的结构。它们可以从体积较小的闭合或者收缩状态变换到开启或者展开状态。相对于传统结构而言,可展与折叠结构具有建造速度快、施工方便等优点,而且便于运输和存储,可反复使用,因而在民用、军事、航天等领域被广泛应用。针对可展与折叠结构的共性问题及关键技术,采用理论分析、数值模拟、物理模型实验相结合的研究手段,对多种新型可展与折叠结构的几何构成、运动过程以及受力性能等进行了深入的研究。
  • 图  1  Iris穹顶开启过程

    Figure  1.  Deploying process of Iris dome

    图  2  上附刚性屋面板的径向开合屋盖展开过程

    Figure  2.  Deploying process of retractable roof with rigid panels

    图  3  两种新型索杆折叠体系

    Figure  3.  Two novel cable and rod folding structures

    图  4  长圆形径向可开启屋盖体系

    Figure  4.  Structure of oblong retractable roof

    图  5  Miura折纸模型及其应用

    Figure  5.  Miura origami model and its application

    图  6  基于折纸原理设计的折叠板壳结构模型

    Figure  6.  Folding plate shell structures based on origami

    图  7  六单元Hoberman连杆机构

    Figure  7.  Hoberman linkage mechanism with six units

    图  8  六单元Hoberman连杆机构展开过程仿真

    Figure  8.  Deploying process simulation of Hoberman linkage mechanism with six units

    图  9  带重复单元的高阶无穷小机构(达芬奇结构)

    Figure  9.  High order infinitesimal mechanism with repeating unit (Da Vinci’s structure)

    图  10  径向折叠结构展开过程应力示意图

    Figure  10.  Stress of deployable dome during deploying process

    图  11  固定支座连杆机构及可开启屋盖体系

    Figure  11.  Linkage with fixed supports and retractable roof

    图  12  CP索杆单元折叠过程

    Figure  12.  Folding process of CP unit

    图  13  基于CP索杆单元的折叠网架试验模型

    Figure  13.  Deployable grid structure composed of CP units

    图  14  基于CP索杆单元的折叠网架静力性能

    Figure  14.  Static performance of deployable grid structure composed of CP units

    图  15  折叠板壳单元示意图

    Figure  15.  Folding plate shell unit

    图  16  等效球面四连杆机构示意图

    Figure  16.  Equivalent spherical 4R mechanism

    图  17  改进滚动铰连接球面四连杆机构

    Figure  17.  Equivalent spherical 4R mechanism connected by improved rolling hinges

    图  18  多个球面四连杆机构组成的体系及相应的折纸模型

    Figure  18.  Structure composed of some spherical 4R mechanisms and paper model

    图  19  折叠板开合屋盖体系实物模型折叠示意图

    Figure  19.  Folding process of real deployable plate roof structure

  • [1] 肖平展. 现代建筑中的折叠结构[J]. 工程建设与设计, 2019(24): 12 − 13.

    Xiao Pingzhan. Folding structures in modern architecture [J]. Construction & Design for Project, 2019(24): 12 − 13. (in Chinese)
    [2] 彭云, 杨军刚, 肖勇, 等. 重力对大型环形可展天线展开动力学的影响研究[J]. 工程力学, 2018, 35(4): 226 − 234, 256. doi: 10.6052/j.issn.1000-4750.2016.12.0992

    Peng Yun, Yang Jungang, Xiao Yong, et al. Gravity effect on deployment dynamics of astromesh [J]. Engineering Mechanics, 2018, 35(4): 226 − 234, 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.12.0992
    [3] 江旭东, 李鹏飞, 刘铮, 等. 球囊扩张式血管支架介入对弯曲血管的生物力学损伤研究[J]. 工程力学, 2019, 36(2): 239 − 248. doi: 10.6052/j.issn.1000-4750.2017.12.0979

    Jiang Xudong, Li Pengfei, Liu Zheng, et al. Numerical investigation of biomechanical injure of curved vessels induced by intervened balloon expandable vascular stent [J]. Engineering Mechanics, 2019, 36(2): 239 − 248. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.12.0979
    [4] 范重, 彭翼, 张康伟, 等. 开合屋盖结构与技术标准的新进展[J]. 钢结构(中英文), 2020, 35(2): 29 − 65.

    Fan Zhong, Peng Yi, Zhang Kangwei, et al. New progress in structure and technical standard of open and closed roof [J]. Steel Construction, 2020, 35(2): 29 − 65. (in Chinese)
    [5] Hoberman C. Reversibly expandable doubly-curved truss structures [P]. US: US04942700A, 1990.
    [6] Hoberman C. Radial expansion retraction truss structure [P]. US: US5024031, 1991.
    [7] Hoberman C. Art and science of folding structures [J]. Sites, 1992, 24: 61 − 69.
    [8] You Z, Pellegrino S. Foldable bar structures [J]. International Journal of Solids & Structures, 1997, 34(15): 1825 − 1847.
    [9] Pellegrino S, Kassabian P E, You Z. Retractable roof structures [J]. Structures & Buildings, 1999, 134(1): 45 − 56.
    [10] Vu K K, Liew J Y R, Anandasivam K. Deployable tension-strut structures: structural morphology study and alternative form creations [J]. International Journal of Space Structures, 2006, 21(3): 149 − 164. doi: 10.1260/026635106779380494
    [11] Vu KK, Liew J Y R, Anandasivam K. Deployable tension-strut structures: from concept to implementation [J]. Journal of Constructional Steel Research, 2006, 62: 195 − 209. doi: 10.1016/j.jcsr.2005.07.007
    [12] Jensen F V. Cover elements for retractable roof structures [D]. UK: University of Cambridge, 2001.
    [13] Jensen F V, Pellegrino S. Expandable structures formed by hinged plates [C]. UK: Fifth International Conference on Space Structures, 2002.
    [14] 毛德灿. 双链形连杆机构设计原理及其在开启结构中的应用[D]. 浙江: 浙江大学, 2008.

    Mao Decan. Design theory of double chain mechanism and its application in retractable structures [D]. Zhejiang: Zhejiang University, 2008. (in Chinese)
    [15] Mao D, Luo Y Z, You Z. Planar closed loop double chain linkages [J]. Mechanism and Machine Theory, 2007, 28: 1 − 10.
    [16] Luo Y Z, Mao D, You Z. On a type of radially retractable plate structures [J]. International Journal of Solids and Structures, 2007, 44: 3452 − 3467. doi: 10.1016/j.ijsolstr.2006.09.035
    [17] Miura K. Method of packaging and deployment of large membranes in space [C]. JPN: Proceedings of 31st IAF Congress, 1980: IAF-80-A31.
    [18] Miura K. Folded map and Atlas design based on the geometric principle [C]. Beijing: Proceedings of the 20th international Cartographic Conference, 2001.
    [19] Kuribayashi K. A novel foldable stent graft [D]. UK: Oxford University, 2004.
    [20] Bouten S. Transformable structures and their architectural application [D]. BE: Ghent University, 2015.
    [21] Doroftei I A, Bujoreanu C, Doroftei I. An overview on the applications of mechanisms in architecture. Part II: Foldable plate structures [C]. UK: IOP Publishing, 2018.
    [22] Rodonò G, Naboni E, Sapienza V, et al. Simulation workflow for parametric optimization of outdoor comfort-based origami shelter [J]. Journal of Architectural Engineering, 2020, 26(3): 04020022. doi: 10.1061/(ASCE)AE.1943-5568.0000410
    [23] Melancon D, Gorissen B, García-Mora C J, et al. Multi-stable inflatable origami structures at the metre scale [J]. Nature, 2021, 592: 545 − 550. doi: 10.1038/s41586-021-03407-4
    [24] 喻莹, 徐新卓, 罗尧治. 基于Kresling折纸构型的空间结构可控失稳模式研究[J]. 工程力学, 2021, 38(8): 75 − 84. doi: 10.6052/j.issn.1000-4750.2020.08.0545

    Yu Ying, Xu Xinzhuo, Luo Yaozhi. Programmable instability of spatial structures based on kresling origami [J]. Engineering Mechanics, 2021, 38(8): 75 − 84. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0545
    [25] 蔡建国. 新型可展结构形态分析与运动过程研究[D]. 南京: 东南大学, 2012.

    Cai Jianguo. Shape and stress analyses and moving process research of new types of deployable structures [D]. Nanjing: Southeast University, 2012. (in Chinese)
    [26] 江超. 抛物面刚性可展结构的可动性判别与运动过程研究[D]. 南京: 东南大学, 2015.

    Jiang Chao. Mobility discriminant and movement study of the paraboloid rigid deployable structure [D]. Nanjing: Southeast University, 2015. (in Chinese)
    [27] 陆栋. 径向开合屋盖的可动性判定与体系优化[D]. 南京: 东南大学, 2017.

    Lu Dong. The mobility judgement and system optimization of radial retractable roof [D]. Nanjing: Southeast University, 2017. (in Chinese)
  • 加载中
图(19)
计量
  • 文章访问数:  152
  • HTML全文浏览量:  98
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-25
  • 修回日期:  2022-03-18
  • 网络出版日期:  2022-04-16
  • 刊出日期:  2022-06-06

目录

    /

    返回文章
    返回