留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢管混凝土L形柱-H型钢梁Z字形节点抗震性能研究

吴桐宇 刘学春 陈学森

吴桐宇, 刘学春, 陈学森. 钢管混凝土L形柱-H型钢梁Z字形节点抗震性能研究[J]. 工程力学, 2022, 39(S): 101-108. doi: 10.6052/j.issn.1000-4750.2021.06.S016
引用本文: 吴桐宇, 刘学春, 陈学森. 钢管混凝土L形柱-H型钢梁Z字形节点抗震性能研究[J]. 工程力学, 2022, 39(S): 101-108. doi: 10.6052/j.issn.1000-4750.2021.06.S016
WU Tong-yu, LIU Xue-chun, CHEN Xue-sen. SEISMIC BEHAVIOR OF Z-SHAPED JOINT CONNECTING H-BEAM AND L-SHAPED CONCRETE-FILLED STEEL TUBULAR COLUMN[J]. Engineering Mechanics, 2022, 39(S): 101-108. doi: 10.6052/j.issn.1000-4750.2021.06.S016
Citation: WU Tong-yu, LIU Xue-chun, CHEN Xue-sen. SEISMIC BEHAVIOR OF Z-SHAPED JOINT CONNECTING H-BEAM AND L-SHAPED CONCRETE-FILLED STEEL TUBULAR COLUMN[J]. Engineering Mechanics, 2022, 39(S): 101-108. doi: 10.6052/j.issn.1000-4750.2021.06.S016

钢管混凝土L形柱-H型钢梁Z字形节点抗震性能研究

doi: 10.6052/j.issn.1000-4750.2021.06.S016
基金项目: 国家自然科学基金项目(51978013)
详细信息
    作者简介:

    吴桐宇 (1996−),男(汉族),北京人,硕士生,主要从事钢结构设计与抗震研究(E-mail: 857937957@qq.com)

    刘学春 (1974−),男(汉族),河北遵化人,教授,工学博士,主要从大跨度预应力钢结构和装配式高层钢结构体系创新与应用研究(E-mail: liuxuechun@bjut.edu.cn)

    通讯作者:

    陈学森 (1990−),男(汉族),河北保定人,助理研究员,工学博士,主要从事钢结构研究(E-mail: chenxuesen@bjut.edu.cn)

  • 中图分类号: TU352.1+1;TU398+.9

SEISMIC BEHAVIOR OF Z-SHAPED JOINT CONNECTING H-BEAM AND L-SHAPED CONCRETE-FILLED STEEL TUBULAR COLUMN

  • 摘要: 对适用于装配式钢结构的钢管混凝土L形柱-H型钢梁Z字形节点的抗震性能进行研究。建立并基于节点试验结果验证了ABAQUS有限元模型,通过有限元分析获得了节点的荷载-位移曲线、骨架曲线、破坏模式和性能指标。结果表明:设置腹板拼接板、增加梁高、减小上翼缘最外排螺栓与拼接区中心距离等措施,能够提高节点的屈服荷载和峰值荷载;增加翼缘高强度螺栓数量能够提高节点的滑移荷载,但是会降低延性;增加悬臂梁外伸距离,可以提高滑移荷载、屈服荷载和峰值荷载,减少翼缘连接的高强度螺栓数量需求。基于有限元结果,验证了节点受弯承载力和极限受弯承载力计算公式的可靠性。
  • 图  1  节点构造示意

    Figure  1.  Construction of joint

    图  2  节点详图

    Figure  2.  Details of the joint

    图  3  有限元模型

    Figure  3.  Finite element model

    4  荷载-位移曲线

    4.  Load-displacement curve

    图  5  骨架曲线

    Figure  5.  Skeleton curve

    图  6  NS1~NS3节点试验与有限元失效模式对比

    Figure  6.  Comparison between test and finite element failure modes of NS1~NS3 joints

    图  7  NS4~NS15节点破坏模式

    Figure  7.  Failure modes of NS4~NS15 joints

    图  8  节点计算简图

    Figure  8.  Calculation sketch of joint

    表  1  节点编号和参数

    Table  1.   Number and parameters of the joints

    节点
    编号
    腹板
    拼接板
    翼缘高强螺
    栓数量
    垂直
    加劲肋
    H型钢
    梁高/mm
    悬臂梁外伸
    距离/mm
    上翼缘最外排螺栓与拼接区
    中心距离/mm
    NS1 6 194 200 45
    NS2 6 194 200 45
    NS3 8 194 260 45
    NS4 10 194 320 45
    NS5 8 194 260 45
    NS6 10 194 320 45
    NS7 6 194 200 45
    NS8 6 244 200 45
    NS9 6 294 200 45
    NS10 6 194 400 45
    NS11 6 194 400 45
    NS12 8 194 400 45
    NS13 10 194 400 45
    NS14 6 194 250 95
    NS15 6 194 300 145
    下载: 导出CSV

    表  2  节点主要性能指标

    Table  2.   Primary performance indicators of the joints

    节点编号方向滑移荷载Ps/kN滑移位移Δs/mm屈服荷载Py/kN屈服位移Δy/mm峰值荷载Pu/kN极限位移Δu/mm延性系数μ极限转角θu/(%rad)
    NS1正向34.4013.9268.9869.4483.04155.7111.197.99
    负向35.0113.8771.4773.3886.65155.7011.237.98
    NS2正向35.4914.1041.1440.0362.57125.898.936.46
    负向36.2414.1060.3760.2278.50155.7411.047.99
    NS3正向48.6118.1552.3729.1864.54120.446.646.18
    负向49.5619.1858.0344.0781.83147.117.677.54
    NS4正向49.1618.3261.5829.5268.64109.455.985.61
    负向49.4418.2067.3642.7684.89143.397.887.35
    NS5正向51.2219.1463.9246.1085.09154.738.087.93
    负向52.4619.2367.1957.4795.28155.388.087.97
    NS6正向65.2028.9469.0642.9490.90155.855.397.99
    负向64.7326.7069.1452.79100.21152.345.717.81
    NS7正向37.9717.6958.2463.3580.47155.928.828.00
    负向38.3617.5657.9066.0882.81154.628.807.93
    NS8正向48.0714.1074.2445.5198.93155.4511.037.97
    负向48.9414.0887.7457.79114.17155.8311.077.99
    NS9正向57.3713.5698.2438.89116.79126.229.316.47
    负向58.9013.37107.0950.60136.98154.5111.557.92
    NS10正向37.8814.1049.4940.5469.78109.037.735.59
    负向38.0714.1068.6557.1284.71145.5010.327.46
    NS11正向44.6718.0177.9564.0294.04153.748.547.88
    负向45.3817.9279.6372.24101.30150.398.397.71
    NS12正向52.5319.1872.1451.6495.58151.997.937.79
    负向52.0919.1874.3360.18104.10155.168.097.96
    NS13正向68.5628.4271.2042.0192.60155.165.467.96
    负向68.1828.6272.6551.39101.79154.075.387.90
    NS14正向37.5414.1054.7045.7171.21132.539.406.80
    负向37.1614.1068.5963.7586.61152.1410.797.80
    NS15正向38.1614.1058.0347.4774.38110.887.865.69
    负向37.7814.1067.8458.0384.58155.9711.068.00
    下载: 导出CSV

    表  3  受弯承载力模拟值与公式值对比

    Table  3.   Comparison of flexural capacity between simulated values and formula values

    节点编号受弯承载力模拟值
    MR,FE/(kN·m)
    受弯承载力公式值
    MR/(kN·m)
    MR/MR,FE极限受弯承载力
    模拟值Mu,FE/(kN·m)
    极限受弯承载力
    公式值Mu/(kN·m)
    Mu/Mu,FE
    正向负向MS1MS2MR 正向负向 正向负向 Mu1Mu2Mu3Mu 正向负向
    NS167.168.364.888.364.80.970.95161.9169.0140.9196.1 99.199.10.610.59
    NS269.270.764.888.364.80.940.92122.0153.1140.9196.199.199.10.810.65
    NS394.896.690.092.090.00.950.93125.9159.6195.9272.6103.4103.40.820.65
    NS495.996.4117.696.196.11.001.00133.8165.5255.8355.9108.0108.00.810.65
    NS599.9102.390.092.090.00.900.88165.9185.8195.9272.6103.4103.40.620.56
    NS6127.1126.2117.696.196.10.760.76177.3195.4255.8355.9108.0108.00.610.55
    NS774.074.864.888.364.80.870.87156.9161.5140.9196.199.199.10.630.61
    NS893.795.481.5111.081.50.870.85192.9222.6177.2246.6124.7124.70.650.56
    NS9111.9114.898.2133.898.20.880.85227.7267.1213.5297.1150.2150.20.660.56
    NS1080.483.075.0102.275.00.930.90136.1165.2163.1227.0114.8114.80.840.69
    NS1187.188.575.0102.275.00.860.85183.4197.5163.1227.0114.8114.80.630.58
    NS12102.4101.6100.0102.2100.00.980.98186.4203.0217.5302.7114.8114.80.620.57
    NS13133.7132.9125.0102.2102.20.760.77180.6198.5271.9378.4114.8114.80.640.58
    NS1473.272.564.888.364.80.880.89138.9168.9140.9196.199.199.10.710.59
    NS1574.473.764.888.364.80.870.88145.0164.9140.9196.199.199.10.680.60
    平均值0.890.64
    标准差0.070.07
    下载: 导出CSV
  • [1] Luis F Ibarra, Helmut Krawinnkler. Global collapse of frame structures under seismic excitations [R]. Stanford, Califormia: The John A. Blume Earthquake Engineering Research Center, 2005.
    [2] Miller D K. Lessons learned from the Northridge earthquake [J]. Engineering Structures, 1998, 20(4/5/6): 249 − 260. doi: 10.1016/S0141-0296(97)00031-X
    [3] Nakashima M, Inoue K, Tada M. Classification of damage to steel buildings observed in the 1995 Hyogoken-Nanbu earthquake [J]. Engineering Structures, 1998, 20(4/5/6): 271 − 281. doi: 10.1016/S0141-0296(97)00019-9
    [4] 张爱林, 孙勇, 刘学春, 詹欣欣, 李超. 方钢管混凝土柱-H形钢梁螺栓连接节点受力性能试验研究[J]. 建筑结构学报, 2017, 38(11): 64 − 73.

    Zhang Ailin, Sun Yong, Liu Xuechun, Zhan Xinxin, Li Chao. Experimental study on mechanical performance of concrete-filledsquare steel tubular columns to H-section steelbeam bolted connection [J]. Journal of Building Structures, 2017, 38(11): 64 − 73. (in Chinese)
    [5] Liu X C, Zhan X X, Pu S H, et al. Seismic performance study on slipping bolted truss-to-column connections in modularized prefabricated steel structures [J]. Engineering Structures, 2018, 163: 241 − 254. doi: 10.1016/j.engstruct.2018.02.043
    [6] 张伟杰, 廖飞宇, 李威. 带圆弓形脱空缺陷的钢管混凝土构件在压弯扭复合受力作用下的滞回性能试验研究[J]. 工程力学, 2019, 36(12): 121 − 133. doi: 10.6052/j.issn.1000-4750.2018.12.0713

    Zhang Weijie, Liao Feiyu, Li Wei. Experimental study on the cyclic behavior of concrete-filled steel tubular (CFST) members with circular-segment gaps under combined comperssion-bending-torsion loading [J]. Engineering Mechanics, 2019, 36(12): 121 − 133. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.12.0713
    [7] 徐礼华, 宋杨, 刘素梅, 李彪, 余敏, 周凯凯. 多腔式多边形钢管混凝土柱偏心受压承载力研究[J]. 工程力学, 2019, 36(4): 135 − 146. doi: 10.6052/j.issn.1000-4750.2018.02.0090

    Xu Lihua, Song Yang, Liu Sumei, Li Biao, Yu Min, Zhou Kaikai. Study on the eccentric compressive bearing capacity of polygonal multi-cell concrete filled steel tubular columns [J]. Engineering Mechanics, 2019, 36(4): 135 − 146. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.02.0090
    [8] 刘学春, IM MYONG HAK, 陈学森, 余少乐, 潘钧俊. L形钢管混凝土柱-H型钢梁Z字形拼接节点抗震性能研究[J]. 建筑结构, 2021, 51(23): 61 − 68.

    Liu Xuechun, IM MYONG HAK, Chen Xuesen, Yu Shaole, Pan Junjun. Seismic behavior of Z-shaped splicing joint between concrete-filled L-shaped steel tubular column and H-section beam [J]. Building Structure, 2021, 51(23): 61 − 68. (in Chinese)
    [9] ANSI/AISC 341-16, Seismic provisions for structural steel buildings [S]. Chicago: American Institute of Steel Construction, 2016.
    [10] Liu X C, He X N, Wang H X, et al. Bending-shear performance of column-to-column bolted-flange connections in prefabricated multi-high-rise steel structures [J]. Journal of Constructional Steel Research, 2018, 145: 28 − 48.
    [11] Liu X C, Cui F Y, Zhan X X, et al. Seismic performance of bolted connection of H-beam to HSS-column with web end-plate [J]. Journal of Constructional Steel Research, 2019, 156: 167 − 181.
    [12] 刘威. 钢管混凝土局部受压时的工作机理研究 [D]. 福州: 福州大学, 2005.

    Liu Wei. Research on mechanism of concrete-filled steel tubes subjected to local compression [D]. Fuzhou: Fuzhou University, 2005. (in Chinese)
    [13] T/CSCS 012−2021, 多高层建筑全螺栓连接装配式钢结构技术标准 [S]. 北京: 中国建筑工业出版社, 2021.

    T/CSCS 012−2021, Technical standard for fully bolted assembled steel structures of multi-high-rise storey buildings [S]. Beijing: China Architecture & Building Press, 2021. (in Chinese)
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  21
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-01
  • 修回日期:  2022-02-19
  • 网络出版日期:  2022-04-09
  • 刊出日期:  2022-06-06

目录

    /

    返回文章
    返回