SEISMIC BEHAVIOR OF Z-SHAPED JOINT CONNECTING H-BEAM AND L-SHAPED CONCRETE-FILLED STEEL TUBULAR COLUMN
-
摘要: 对适用于装配式钢结构的钢管混凝土L形柱-H型钢梁Z字形节点的抗震性能进行研究。建立并基于节点试验结果验证了ABAQUS有限元模型,通过有限元分析获得了节点的荷载-位移曲线、骨架曲线、破坏模式和性能指标。结果表明:设置腹板拼接板、增加梁高、减小上翼缘最外排螺栓与拼接区中心距离等措施,能够提高节点的屈服荷载和峰值荷载;增加翼缘高强度螺栓数量能够提高节点的滑移荷载,但是会降低延性;增加悬臂梁外伸距离,可以提高滑移荷载、屈服荷载和峰值荷载,减少翼缘连接的高强度螺栓数量需求。基于有限元结果,验证了节点受弯承载力和极限受弯承载力计算公式的可靠性。Abstract: The seismic behavior of Z-shaped joints connecting H-section beam and L-shaped concrete-filled steel tubular column for prefabricated steel structures were studied. The ABAQUS finite element model was established and validated based on the joint test results. The load-displacement curves, skeleton curves, failure mode and performance indicators of the joint were obtained by finite element analysis. According to the finite element results, adding web splice plates, increasing the beam section height or decreasing the distances between the outmost bolts and the splicing zone center can increase the yield load and peak load of the joints. Increasing the bolt number on the flange can improve the slip load of the joint, but may reduce the ductility performance. Increasing the overhang distance of cantilever beam can improve the slip load, yield load and peak load, and reduce the required bolt number for the flange connection. Based on the finite element results, the reliability of the calculation formulas for the joint flexural capacity and ultimate flexural capacity is verified.
-
Key words:
- Z-shaped joint /
- L-shaped column /
- beam-column connection /
- cantilever-beam /
- seismic performance
-
表 1 节点编号和参数
Table 1. Number and parameters of the joints
节点
编号腹板
拼接板翼缘高强螺
栓数量垂直
加劲肋H型钢
梁高/mm悬臂梁外伸
距离/mm上翼缘最外排螺栓与拼接区
中心距离/mmNS1 √ 6 √ 194 200 45 NS2 − 6 √ 194 200 45 NS3 − 8 √ 194 260 45 NS4 − 10 √ 194 320 45 NS5 √ 8 √ 194 260 45 NS6 √ 10 √ 194 320 45 NS7 √ 6 − 194 200 45 NS8 √ 6 √ 244 200 45 NS9 √ 6 √ 294 200 45 NS10 − 6 √ 194 400 45 NS11 √ 6 √ 194 400 45 NS12 √ 8 √ 194 400 45 NS13 √ 10 √ 194 400 45 NS14 √ 6 √ 194 250 95 NS15 √ 6 √ 194 300 145 表 2 节点主要性能指标
Table 2. Primary performance indicators of the joints
节点编号 方向 滑移荷载Ps/kN 滑移位移Δs/mm 屈服荷载Py/kN 屈服位移Δy/mm 峰值荷载Pu/kN 极限位移Δu/mm 延性系数μ 极限转角θu/(%rad) NS1 正向 34.40 13.92 68.98 69.44 83.04 155.71 11.19 7.99 负向 35.01 13.87 71.47 73.38 86.65 155.70 11.23 7.98 NS2 正向 35.49 14.10 41.14 40.03 62.57 125.89 8.93 6.46 负向 36.24 14.10 60.37 60.22 78.50 155.74 11.04 7.99 NS3 正向 48.61 18.15 52.37 29.18 64.54 120.44 6.64 6.18 负向 49.56 19.18 58.03 44.07 81.83 147.11 7.67 7.54 NS4 正向 49.16 18.32 61.58 29.52 68.64 109.45 5.98 5.61 负向 49.44 18.20 67.36 42.76 84.89 143.39 7.88 7.35 NS5 正向 51.22 19.14 63.92 46.10 85.09 154.73 8.08 7.93 负向 52.46 19.23 67.19 57.47 95.28 155.38 8.08 7.97 NS6 正向 65.20 28.94 69.06 42.94 90.90 155.85 5.39 7.99 负向 64.73 26.70 69.14 52.79 100.21 152.34 5.71 7.81 NS7 正向 37.97 17.69 58.24 63.35 80.47 155.92 8.82 8.00 负向 38.36 17.56 57.90 66.08 82.81 154.62 8.80 7.93 NS8 正向 48.07 14.10 74.24 45.51 98.93 155.45 11.03 7.97 负向 48.94 14.08 87.74 57.79 114.17 155.83 11.07 7.99 NS9 正向 57.37 13.56 98.24 38.89 116.79 126.22 9.31 6.47 负向 58.90 13.37 107.09 50.60 136.98 154.51 11.55 7.92 NS10 正向 37.88 14.10 49.49 40.54 69.78 109.03 7.73 5.59 负向 38.07 14.10 68.65 57.12 84.71 145.50 10.32 7.46 NS11 正向 44.67 18.01 77.95 64.02 94.04 153.74 8.54 7.88 负向 45.38 17.92 79.63 72.24 101.30 150.39 8.39 7.71 NS12 正向 52.53 19.18 72.14 51.64 95.58 151.99 7.93 7.79 负向 52.09 19.18 74.33 60.18 104.10 155.16 8.09 7.96 NS13 正向 68.56 28.42 71.20 42.01 92.60 155.16 5.46 7.96 负向 68.18 28.62 72.65 51.39 101.79 154.07 5.38 7.90 NS14 正向 37.54 14.10 54.70 45.71 71.21 132.53 9.40 6.80 负向 37.16 14.10 68.59 63.75 86.61 152.14 10.79 7.80 NS15 正向 38.16 14.10 58.03 47.47 74.38 110.88 7.86 5.69 负向 37.78 14.10 67.84 58.03 84.58 155.97 11.06 8.00 表 3 受弯承载力模拟值与公式值对比
Table 3. Comparison of flexural capacity between simulated values and formula values
节点编号 受弯承载力模拟值
MR,FE/(kN·m)受弯承载力公式值
MR/(kN·m)MR/MR,FE 极限受弯承载力
模拟值Mu,FE/(kN·m)极限受弯承载力
公式值Mu/(kN·m)Mu/Mu,FE 正向 负向 MS1 MS2 MR 正向 负向 正向 负向 Mu1 Mu2 Mu3 Mu 正向 负向 NS1 67.1 68.3 64.8 88.3 64.8 0.97 0.95 161.9 169.0 140.9 196.1 99.1 99.1 0.61 0.59 NS2 69.2 70.7 64.8 88.3 64.8 0.94 0.92 122.0 153.1 140.9 196.1 99.1 99.1 0.81 0.65 NS3 94.8 96.6 90.0 92.0 90.0 0.95 0.93 125.9 159.6 195.9 272.6 103.4 103.4 0.82 0.65 NS4 95.9 96.4 117.6 96.1 96.1 1.00 1.00 133.8 165.5 255.8 355.9 108.0 108.0 0.81 0.65 NS5 99.9 102.3 90.0 92.0 90.0 0.90 0.88 165.9 185.8 195.9 272.6 103.4 103.4 0.62 0.56 NS6 127.1 126.2 117.6 96.1 96.1 0.76 0.76 177.3 195.4 255.8 355.9 108.0 108.0 0.61 0.55 NS7 74.0 74.8 64.8 88.3 64.8 0.87 0.87 156.9 161.5 140.9 196.1 99.1 99.1 0.63 0.61 NS8 93.7 95.4 81.5 111.0 81.5 0.87 0.85 192.9 222.6 177.2 246.6 124.7 124.7 0.65 0.56 NS9 111.9 114.8 98.2 133.8 98.2 0.88 0.85 227.7 267.1 213.5 297.1 150.2 150.2 0.66 0.56 NS10 80.4 83.0 75.0 102.2 75.0 0.93 0.90 136.1 165.2 163.1 227.0 114.8 114.8 0.84 0.69 NS11 87.1 88.5 75.0 102.2 75.0 0.86 0.85 183.4 197.5 163.1 227.0 114.8 114.8 0.63 0.58 NS12 102.4 101.6 100.0 102.2 100.0 0.98 0.98 186.4 203.0 217.5 302.7 114.8 114.8 0.62 0.57 NS13 133.7 132.9 125.0 102.2 102.2 0.76 0.77 180.6 198.5 271.9 378.4 114.8 114.8 0.64 0.58 NS14 73.2 72.5 64.8 88.3 64.8 0.88 0.89 138.9 168.9 140.9 196.1 99.1 99.1 0.71 0.59 NS15 74.4 73.7 64.8 88.3 64.8 0.87 0.88 145.0 164.9 140.9 196.1 99.1 99.1 0.68 0.60 平均值 − − − − − 0.89 − − − − − − 0.64 标准差 − − − − − 0.07 − − − − − − 0.07 -
[1] Luis F Ibarra, Helmut Krawinnkler. Global collapse of frame structures under seismic excitations [R]. Stanford, Califormia: The John A. Blume Earthquake Engineering Research Center, 2005. [2] Miller D K. Lessons learned from the Northridge earthquake [J]. Engineering Structures, 1998, 20(4/5/6): 249 − 260. doi: 10.1016/S0141-0296(97)00031-X [3] Nakashima M, Inoue K, Tada M. Classification of damage to steel buildings observed in the 1995 Hyogoken-Nanbu earthquake [J]. Engineering Structures, 1998, 20(4/5/6): 271 − 281. doi: 10.1016/S0141-0296(97)00019-9 [4] 张爱林, 孙勇, 刘学春, 詹欣欣, 李超. 方钢管混凝土柱-H形钢梁螺栓连接节点受力性能试验研究[J]. 建筑结构学报, 2017, 38(11): 64 − 73.Zhang Ailin, Sun Yong, Liu Xuechun, Zhan Xinxin, Li Chao. Experimental study on mechanical performance of concrete-filledsquare steel tubular columns to H-section steelbeam bolted connection [J]. Journal of Building Structures, 2017, 38(11): 64 − 73. (in Chinese) [5] Liu X C, Zhan X X, Pu S H, et al. Seismic performance study on slipping bolted truss-to-column connections in modularized prefabricated steel structures [J]. Engineering Structures, 2018, 163: 241 − 254. doi: 10.1016/j.engstruct.2018.02.043 [6] 张伟杰, 廖飞宇, 李威. 带圆弓形脱空缺陷的钢管混凝土构件在压弯扭复合受力作用下的滞回性能试验研究[J]. 工程力学, 2019, 36(12): 121 − 133. doi: 10.6052/j.issn.1000-4750.2018.12.0713Zhang Weijie, Liao Feiyu, Li Wei. Experimental study on the cyclic behavior of concrete-filled steel tubular (CFST) members with circular-segment gaps under combined comperssion-bending-torsion loading [J]. Engineering Mechanics, 2019, 36(12): 121 − 133. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.12.0713 [7] 徐礼华, 宋杨, 刘素梅, 李彪, 余敏, 周凯凯. 多腔式多边形钢管混凝土柱偏心受压承载力研究[J]. 工程力学, 2019, 36(4): 135 − 146. doi: 10.6052/j.issn.1000-4750.2018.02.0090Xu Lihua, Song Yang, Liu Sumei, Li Biao, Yu Min, Zhou Kaikai. Study on the eccentric compressive bearing capacity of polygonal multi-cell concrete filled steel tubular columns [J]. Engineering Mechanics, 2019, 36(4): 135 − 146. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.02.0090 [8] 刘学春, IM MYONG HAK, 陈学森, 余少乐, 潘钧俊. L形钢管混凝土柱-H型钢梁Z字形拼接节点抗震性能研究[J]. 建筑结构, 2021, 51(23): 61 − 68.Liu Xuechun, IM MYONG HAK, Chen Xuesen, Yu Shaole, Pan Junjun. Seismic behavior of Z-shaped splicing joint between concrete-filled L-shaped steel tubular column and H-section beam [J]. Building Structure, 2021, 51(23): 61 − 68. (in Chinese) [9] ANSI/AISC 341-16, Seismic provisions for structural steel buildings [S]. Chicago: American Institute of Steel Construction, 2016. [10] Liu X C, He X N, Wang H X, et al. Bending-shear performance of column-to-column bolted-flange connections in prefabricated multi-high-rise steel structures [J]. Journal of Constructional Steel Research, 2018, 145: 28 − 48. [11] Liu X C, Cui F Y, Zhan X X, et al. Seismic performance of bolted connection of H-beam to HSS-column with web end-plate [J]. Journal of Constructional Steel Research, 2019, 156: 167 − 181. [12] 刘威. 钢管混凝土局部受压时的工作机理研究 [D]. 福州: 福州大学, 2005.Liu Wei. Research on mechanism of concrete-filled steel tubes subjected to local compression [D]. Fuzhou: Fuzhou University, 2005. (in Chinese) [13] T/CSCS 012−2021, 多高层建筑全螺栓连接装配式钢结构技术标准 [S]. 北京: 中国建筑工业出版社, 2021.T/CSCS 012−2021, Technical standard for fully bolted assembled steel structures of multi-high-rise storey buildings [S]. Beijing: China Architecture & Building Press, 2021. (in Chinese) -