留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分布式光纤监测的盾构隧道管片变形受力反演分析

随意 程晓辉 李官勇 普利坚 李灿德 廖盤宇

随意, 程晓辉, 李官勇, 普利坚, 李灿德, 廖盤宇. 基于分布式光纤监测的盾构隧道管片变形受力反演分析[J]. 工程力学, 2022, 39(S): 158-163. doi: 10.6052/j.issn.1000-4750.2021.06.S031
引用本文: 随意, 程晓辉, 李官勇, 普利坚, 李灿德, 廖盤宇. 基于分布式光纤监测的盾构隧道管片变形受力反演分析[J]. 工程力学, 2022, 39(S): 158-163. doi: 10.6052/j.issn.1000-4750.2021.06.S031
SUI Yi, CHENG Xiao-hui, LI Guan-yong, PU Li-jian, LI Can-de, LIAO Pan-yu. INVERSION ANALYSIS OF DEFORMATION AND FORCE OF SHIELD TUNNEL SEGMENTS BASED ON DISTRIBUTED OPTICAL-FIBRE MONITORING[J]. Engineering Mechanics, 2022, 39(S): 158-163. doi: 10.6052/j.issn.1000-4750.2021.06.S031
Citation: SUI Yi, CHENG Xiao-hui, LI Guan-yong, PU Li-jian, LI Can-de, LIAO Pan-yu. INVERSION ANALYSIS OF DEFORMATION AND FORCE OF SHIELD TUNNEL SEGMENTS BASED ON DISTRIBUTED OPTICAL-FIBRE MONITORING[J]. Engineering Mechanics, 2022, 39(S): 158-163. doi: 10.6052/j.issn.1000-4750.2021.06.S031

基于分布式光纤监测的盾构隧道管片变形受力反演分析

doi: 10.6052/j.issn.1000-4750.2021.06.S031
基金项目: 香丽高速公路特殊结构隧道建造技术风险和优化研究项目(云交科教[2018]36号)
详细信息
    作者简介:

    程晓辉(1971−),男,江苏人,副教授,博士,主要从事隧道工程、岩土力学研究(E-mail: chengxh@tsinghua.edu.cn)

    李官勇(1979−),男,云南人,高工,本科,主要从事隧道工程施工建造研究(E-mail: 68163677@qq.com)

    普利坚(1978−),男,云南人,正高工,本科,主要从事隧道工程施工建造研究(E-mail: 850446523@qq.com)

    李灿德(1984−),男,云南人,高工,本科,主要从事隧道工程施工建造研究(E-mail: 838963999@qq.com)

    廖盤宇(1997−),男,广西人,本科,主要从事隧道工程研究(E-mail: liaopy7@mail2.sysu.edu.cn)

    通讯作者:

    随 意(1992−),男,天津人,博士生,主要从事隧道工程、光纤监测研究(E-mail: suiy17@mails.tsinghua.edu.cn)

  • 中图分类号: U452.1+4

INVERSION ANALYSIS OF DEFORMATION AND FORCE OF SHIELD TUNNEL SEGMENTS BASED ON DISTRIBUTED OPTICAL-FIBRE MONITORING

  • 摘要: 为研究盾构隧道变形受力分布情况,依托于某盾构隧道进行了分布式光纤监测。在盾构隧道管片预制期间,将分布式光纤沿环向布设于管片内部钢筋笼的上、下表面。分别在管片安装后及变形稳定后进行了分布式光纤监测,得到管片内部真实应变分布。基于所得连续的应变数据,利用已经提出的反演分析方法计算出了监测期间管片的位移、内力及外荷载分布。反演计算结果表明,隧道监测期间盾构隧道的变形模式为向左的斜椭圆与整体环向压缩的耦合变形。由内力分布可知,在管片接头处内力的波动明显,这是由于管片接头处刚度变化导致的。为反映这种波动,管片设计中更宜采用梁-弹簧模型。给出了管片结构的破坏包络图,将反演分析所得内力值标注其中,并选取危险截面进行了结构安全校核,计算结果证明隧道管片受力安全。
  • 图  1  管片配筋及光纤布设示意图

    Figure  1.  Schematic diagram of reinforcement of segments and optical fibre layout

    图  2  监测期间管片环向应变分布

    Figure  2.  Circumferential strain distribution of segments during monitoring

    图  3  监测期间管片的位移分布图及变形模式图

    Figure  3.  Displacement distribution and deformation mode of segments during monitoring

    4  监测期间管片内力及外荷载变化分布图

    4.  Force and load distribution of segments during monitoring

    图  5  轴力-弯矩破坏包络线及反演分析所得内力值

    Figure  5.  Axial force-bending moment failure envelope and force values calculated by inversion analysis

    表  1  盾构管片内力校核表

    Table  1.   Force check for shield tunnel segments

    截面轴力N/kN剪力Q/kN极限剪力Qu/kNQ/Qu弯矩M/(kN·m)极限弯矩Mu/(kN·m)M/Mu
    1 −7661.2 288.5 1994.9 0.14 497.4 2745.90 0.180
    2 2375.9 −210.0 983.5 0.21 202.0 617.60 0.330
    3 −4988.8 747.6 2329.60 0.320
    4 −4433.5 −554.6 −1816.47 0.310
    5 −6657.9 359.1 1924.7 0.19 132.9 2607.80 0.051
    下载: 导出CSV
  • [1] 何川, 封坤, 晏启祥. 高速铁路水下盾构隧道管片内力分布规律研究[J]. 铁道学报, 2012, 234(4): 101 − 109. doi: 10.3969/j.issn.1001-8360.2012.04.017

    He Chuan, Feng Kun, Yan Qixiang. Study on inner force distribution of segmental lining of high-speed railway underwater shield tunnel [J]. Journal of the China Railway Society, 2012, 234(4): 101 − 109. (in Chinese) doi: 10.3969/j.issn.1001-8360.2012.04.017
    [2] Sugimoto M, Chen J, Sramoon A. Frame structure analysis model of tunnel lining using nonlinear ground reaction curve [J]. Tunnelling and Underground Space Technology, 2019, 94: 1 − 7.
    [3] 耿萍, 唐睿, 陈枰良, 等. 考虑剪切作用的盾构隧道管片接头力学模型研究[J]. 工程力学, 2020, 37(3): 166 − 175. doi: 10.6052/j.issn.1000-4750.2019.04.0213

    Geng Ping, Tang Rui, Chen Pingliang, et al. Research of mechanical model of shield tunnel's segment joint under the shearing effect [J]. Engineering Mechanics, 2020, 37(3): 166 − 175. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.0213
    [4] Chaipanna P, Jongpradist P. 3D response analysis of a shield tunnel segmental lining during construction and a parametric study using the ground-spring model [J]. Tunnelling and Underground Space Technology, 2019, 90: 369 − 382. doi: 10.1016/j.tust.2019.05.015
    [5] Ding W, Chen X, Jin Y, et al. Flexural behavior of segmental joint containing double rows of bolts: Experiment and simulation [J]. Tunnelling and Underground Space Technology, 2021, 112: 1 − 20.
    [6] Moffat R A, Sotomayor J, Beltrán J F. Estimating tunnel wall displacements using a simple sensor based on a Brillouin optical time domain reflectometer apparatus [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 75: 233 − 243. doi: 10.1016/j.ijrmms.2014.10.013
    [7] Gue C Y, Wilcock M J, Alhaddad M M, et al. Tunnelling close beneath an existing tunnel in clay-perpendicular undercrossing [J]. Géotechnique, 2017, 67(9): 795 − 807.
    [8] Mohamad H, Soga K, Bennett P J, et al. Monitoring twin tunnel interaction using distributed optical fiber strain measurements [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(8): 957 − 967. doi: 10.1061/(ASCE)GT.1943-5606.0000656
    [9] 沈圣, 吴智深, 杨才千, 等. 基于分布式光纤应变传感技术的盾构隧道横截面收敛变形监测方法[J]. 土木工程学报, 2013, 46(9): 112 − 124.

    Shen Sheng, Wu Zhishen, Yang Caiqian, et al. Convergence deformation monitoring of shield tunnels based on distributed optical fiber strain sensing technique [J]. China Civil Engineering Journal, 2013, 46(9): 112 − 124. (in Chinese)
    [10] Sui Y, Cheng X, Li Cl. Distributed fibre optic monitoring of damaged lining in double-arch tunnel and analysis of its deformation mode [J]. Tunnelling and Underground Space Technology, 2021, 110: 1 − 12.
    [11] GB 50010−2010, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010.

    GB 50010−2010, Code for design of concrete structures [S]. Beijing: China Architecture and Building Press, 2010. (in Chinese)
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  12
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-01
  • 修回日期:  2022-04-01
  • 网络出版日期:  2022-04-16
  • 刊出日期:  2022-06-06

目录

    /

    返回文章
    返回