ANALYSIS OF WIND SPEED PROBABILITY MODEL OF SEA-CROSSING BRIDGE AFFECTED BY TYPHOONS
-
摘要: 中国东部沿海地区常受台风侵扰,各台风不同的气旋结构和登陆位置使其对跨海桥梁结构的影响有较大差异。台风期间桥位处的风速概率模型是分析桥位风场特征、评估桥梁抗风能力重要依据。安装于跨海桥梁上的结构健康监测系统实时获取的风场监测数据为了解台风期间桥位风场特征和开展风速概率模型分析提供了数据基础。以影响西堠门大桥的三个典型台风为研究对象,结合桥位风场实时监测数据,采用贝叶斯方法对风速概率模型参数进行动态识别与持续更新,建立的风速概率分布时变模型能够呈现不同时刻的风速概率分布及其在台风全过程中的演变规律,并对三个台风的风速分布及其演变进行了对比分析。对于近侧的登陆风,桥址风场的风速分布具有较大波动性;而对于远端风场,台风影响半径范围内风速分布相对稳定,影响半径范围外则风速分布波动强烈。Abstract: Typhoons frequently wreak havoc on China's eastern coast. The influence of typhoons with different cyclone structures and landing locations on sea-crossing bridges is quite different. The wind speed probability model at the bridge site is critical for studying the wind field characteristics and for evaluating the wind resistance capability of the bridge. The real-time monitoring data of wind field during typhoon periods obtained by the structural health monitoring system installed on the sea-crossing bridge provides the data basis for studying the wind field characteristics of bridge site and the analysis of a wind speed probability model. Three typical typhoons which have affected Xihoumen Bridge were investigated. Combined with the real-time monitoring data of the wind field at the bridge site, the parameters of the wind speed probability model were dynamically identified and continually updated using the Bayesian method. A time-varying model of wind speed probability distribution was developed, which can depict the wind speed probability distribution at any given time and its progression through the whole typhoon life cycle. Three typhoons' wind speed distribution and evolution were compared. As for the landing typhoon close to the bridge, the wind speed distribution at the bridge site fluctuates. When the typhoon's center is far away from the bridge, the wind speed distribution is relatively stable within the influence radius of the typhoon, and fluctuates strongly outside the influence radius.
-
表 1 三个典型台风至桥位距离最近时的参数
Table 1. Parameters when three typical typhoons were closest to the bridge site
台风 距桥位最近时刻/
(年/月/日)距离/
km风场性质 移动速度/
(km/h)中心风速/
(m/s)中心气压/
hPa灿鸿 2015/7/11 47 直接登陆
近侧风场20 45 955 莫兰蒂 2016/9/16 300 邻省登陆
远端风场38 16 1002 泰利 2017/9/15 320 未登陆
远端风场8 45 950 -
[1] Cao S Y, Tamura Y, Kikuchi N, et al. Wind characteristics of a strong typhoon [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2009, 97(1): 11 − 21. doi: 10.1016/j.jweia.2008.10.002 [2] 史文海, 董大治, 李正农. 沿海地区近地边界层强/台风的统计特征分析[J]. 工程力学, 2013, 30(增刊 1): 30 − 33. doi: 10.6052/j.issn.1000-4750.2012.05.S071Shi Wenhai, Dong Dazhi, Li Zhengnong. Statistical characteristics analysis of boundary layer strong wind or typhoon in coastal areas [J]. Engineering Mechanics, 2013, 30(Suppl 1): 30 − 33. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.05.S071 [3] 全涌, 肖钰川, 顾明. 平均时距对良态风气候地区极值风速的影响研究[J]. 工程力学, 2020, 37(4): 129 − 134, 152. doi: 10.6052/j.issn.1000-4750.2019.06.0308Quan Yong, Xiao Yuchuan, Gu Ming. Study on the effect of average time intervals on extreme wind speed in normal wind climate areas [J]. Engineering Mechanics, 2020, 37(4): 129 − 134, 152. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.06.0308 [4] 潘晶晶, 赵林, 冀春晓, 等. 东南沿海登陆台风近地脉动特性分析[J]. 建筑结构学报, 2016, 37(1): 85 − 90.Pan Jingjing, Zhao Lin, Ji Chunxiao, et al. Fluctuating wind characteristics near flat ground during typhoon landfall in southeast coastal areas of China [J]. Journal of Building Structures, 2016, 37(1): 85 − 90. (in Chinese) [5] Huang P, Xie W, Gu M. A comparative study of the wind characteristics of three typhoons based on stationary and nonstationary models [J]. Natural Hazards, 2020, 101(3): 785 − 815. doi: 10.1007/s11069-020-03894-0 [6] 王小松, 郭增伟, 袁航, 等. 台风“布拉万”远端风场阵风特性分析[J]. 振动与冲击, 2018(8): 34 − 41.Wang Xiaosong, Guo Zengwei, Yuan Hang, et al. Gust characteristics analysis of wind field at the periphery of typhoon 'Balaven' [J]. Vibration and Shock, 2018(8): 34 − 41. (in Chinese) [7] Guo J, Hu C J, Zhu M J, et al. Monitoring-based evaluation of dynamic characteristics of a long span suspension bridge under typhoons [J]. Journal of Civil Structural Health Monitoring, 2021, 11: 397 − 410. doi: 10.1007/s13349-020-00458-5 [8] Guo J, Hang D, Zhu X. Prediction of crack propagation in U-Rib components based on the markov chain [J]. Journal of Bridge Engineering, 2020, 25(10): 04020089. doi: 10.1061/(ASCE)BE.1943-5592.0001624 [9] 董胜, 林逸凡. 固定测站的风向风速联合分布研究[J]. 工程力学, 2016, 33(6): 234 − 241. doi: 10.6052/j.issn.1000-4750.2014.11.1002Dong Sheng, Lin Yifan. Study of joint probabilistic distribution of wind speed and direction at a fixed observation station [J]. Engineering Mechanics, 2016, 33(6): 234 − 241. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.11.1002 [10] 陈伏彬, 翁兰溪, 肖雁, 等. 近海山地台风风场特性实测研究[J]. 工程力学, 2021, 38(8): 33 − 41. doi: 10.6052/j.issn.1000-4750.2020.07.0524Chen Fubin, Weng Lanxi, Xiao Yan, et al. Field measurement of typhoon wind characteristics in offshore mountainous areas [J]. Engineering Mechanics, 2021, 38(8): 33 − 41. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0524 [11] 韩建平, 郑沛娟. 环境激励下基于快速贝叶斯FFT的实桥模态参数识别[J]. 工程力学, 2014, 31(4): 119 − 125. doi: 10.6052/j.issn.1000-4750.2012.07.0560Han Jianping, Zheng Peijuan. Modal parameter identification of an actual bridge by fast Bayesian FFT method under ambient excitation [J]. Engineering Mechanics, 2014, 31(4): 119 − 125. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.07.0560 [12] Yan W J, Katafygiotis L S. A two-stage fast Bayesian spectral density approach for ambient modal analysis. Part II: mode shape assembly and case studies [J]. Mechanical Systems and Signal Processing, 2015, 54/55: 156 − 171. doi: 10.1016/j.ymssp.2014.08.016 [13] Li Z J, Feng M Q, Luo L X, et al. Statistical analysis of modal parameters of a suspension bridge based on Bayesian spectral density approach and SHM data [J]. Mechanical Systems and Signal Processing, 2018, 98: 352 − 367. doi: 10.1016/j.ymssp.2017.05.005 [14] Ye X Y, Xi P S, Su Y H, et al. Stochastic characterization of wind field characteristics of an arch bridge instrumented with structural health monitoring system [J]. Structural Safety, 2018, 71: 47 − 56. doi: 10.1016/j.strusafe.2017.11.003 [15] Wang Y, Li Y F, Zhou R M, et al. Bayesian infinite mixture models for wind speed distribution estimation [J]. Energy Conversion and Management, 2021, 236: 113946. doi: 10.1016/j.enconman.2021.113946 [16] 郭健. 跨海大桥健康监测的关键技术分析[J]. 中国工程科学, 2010, 12(7): 90 − 95. doi: 10.3969/j.issn.1009-1742.2010.07.019Guo Jian. Key technique analysis of health monitoring of trans-oceanic bridges [J]. Strategic Study of CAE, 2010, 12(7): 90 − 95. (in Chinese) doi: 10.3969/j.issn.1009-1742.2010.07.019 -