留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粒子法和离散元法在管土耦合分析中的应用

徐涛龙 邵常宁 兰旭彬 丁鸿超

徐涛龙, 邵常宁, 兰旭彬, 丁鸿超. 粒子法和离散元法在管土耦合分析中的应用[J]. 工程力学, 2022, 39(S): 239-249. doi: 10.6052/j.issn.1000-4750.2021.06.S048
引用本文: 徐涛龙, 邵常宁, 兰旭彬, 丁鸿超. 粒子法和离散元法在管土耦合分析中的应用[J]. 工程力学, 2022, 39(S): 239-249. doi: 10.6052/j.issn.1000-4750.2021.06.S048
XU Tao-long, SHAO Chang-ning, LAN Xu-bin, DING Hong-chao. APPLICATION OF PARTICLE METHOD AND DISCRETE ELEMENT METHOD IN PIPE-SOIL COUPLING ANALYSIS[J]. Engineering Mechanics, 2022, 39(S): 239-249. doi: 10.6052/j.issn.1000-4750.2021.06.S048
Citation: XU Tao-long, SHAO Chang-ning, LAN Xu-bin, DING Hong-chao. APPLICATION OF PARTICLE METHOD AND DISCRETE ELEMENT METHOD IN PIPE-SOIL COUPLING ANALYSIS[J]. Engineering Mechanics, 2022, 39(S): 239-249. doi: 10.6052/j.issn.1000-4750.2021.06.S048

粒子法和离散元法在管土耦合分析中的应用

doi: 10.6052/j.issn.1000-4750.2021.06.S048
基金项目: 国家科技支撑计划项目(2011BAK06B01-11);油气消防四川省重点实验室开放基金项目(YQXF201601);西南石油大学石油管材服役安全青年科技创新团队项目(2018CXTD01)
详细信息
    作者简介:

    邵常宁(1996−),男,山东人,硕士生,从事油气管道第三方损伤分析及管道风险评价等研究(E-mail: schangning@qq.com)

    兰旭彬(1994−),男,黑龙江人,硕士生,从事油气管道地质灾害损伤分析及管道风险评价等研究(E-mail: 2267266634@qq.com)

    丁鸿超(1997−),男,甘肃人,硕士生,从事油气管道地质灾害损伤分析及管道风险评价等研究(E-mail: 1010365014@qq.com)

    通讯作者:

    徐涛龙(1984−),男,浙江人,讲师,博士,从事管线力学及完整性管理等研究(E-mail: swpuxtl@swpu.edu.cn)

  • 中图分类号: TU43

APPLICATION OF PARTICLE METHOD AND DISCRETE ELEMENT METHOD IN PIPE-SOIL COUPLING ANALYSIS

  • 摘要: 为克服管土耦合分析中土体分层、压缩、运移、流变等大变形问题,传统有限元分析技术需借助新的土体模拟及耦合方法。其中,基于纯拉格朗日的粒子法(PM)和细观离散单元理论的离散元法(DEM),因其在土体大变形领域的独特优势而得到广泛关注。针对管道沿线最常见的地质灾害和第三方扰动行为,利用光滑粒子流体动力学(SPH)分析土质滑坡大变形、黏性泥石流冲刷下管道的受力变形特征,获取管道受土中近场爆炸冲击下的动态响应规律,精确模拟了爆炸土中成腔、土体层裂、压缩等现象,联合离散元法中的颗粒流软件(PFC)与三维有限差分程序(FLAC 3D)再现挖机多铲掘进下土体的运移过程,得到管体的载荷累积效应。多次实践表明:以SPH为代表的粒子法和以PFC为代表的离散元法均能较好解决管土耦合分析中土体的非线性大变形问题,引入流体动力学手段,达到了土体变形研究方法多元化的目的,为进一步研究土中多物理场耦合响应机理奠定了基础。
  • 图  1  SPH-FEM模拟结果与全尺寸试验结果对比

    Figure  1.  Comparison between SPH-FEM simulation results and full-scale test results

    2  滑坡演变中滑体及管道位移云图

    2.  Nephogram of landslide mass and pipeline displacement in landslide evolution

    图  3  滑坡演变过程中管道迎滑面等效应力曲线

    Figure  3.  Equivalent stress curve of pipeline upstream sliding surface during landslide evolution

    图  4  滑坡演变过程中管道背滑面等效应力曲线

    Figure  4.  Equivalent stress curve of pipeline downstream sliding surface during landslide evolution

    图  5  滑坡演变过程中管道轴向应力云图

    Figure  5.  Nephogram of pipeline axial stress during landslide evolution

    图  6  泥石流冲击管道过程

    Figure  6.  Process of debris flow impacting pipeline

    图  7  泥石流下管道的应力时程

    Figure  7.  Stress time history of pipeline under debris flow

    图  8  试验与模拟结果不同时刻土壤鼓包形态对比图

    Figure  8.  Comparison of soil bulge morphology at different times of test and simulation results

    图  9  试验与模拟结果不同时刻的对比

    Figure  9.  Comparison of test and simulation results at different times

    图  10  爆腔形态模拟结果与理论尺寸对比

    Figure  10.  Comparison between simulation results of blasting cavity shape and theoretical size

    图  11  不同土壤中管道最大等效应力云图

    Figure  11.  Cloud diagram of maximum equivalent stress of pipeline in different soils

    图  12  不同土壤内的爆腔形态(计算时刻:50 ms)

    Figure  12.  Explosion cavity shape in different soils (calculation time: 50 ms)

    图  13  基于PFC-FLAC 3D的铲斗-土体-管道耦合模型

    Figure  13.  Bucket-soil-pipe coupling model based on PFC-FLAC 3D

    图  14  铲斗-土体-管道耦合模型的动态挖掘过程

    Figure  14.  Dynamic excavation process of bucket-soil-pipe coupling model

    图  15  多铲挖掘过程中各铲挖掘力及管道振动情况

    Figure  15.  Excavation force and pipeline vibration of each shovel during multi shovel excavation

    图  16  不同挖掘时刻各铲作用下管道应力分布

    Figure  16.  Stress distribution of pipeline under the action of shovel at different excavation times

  • [1] 何满潮, 黄润秋, 王金安, 等. 工程地质数值法[M]. 北京: 科学出版社, 2006.

    He Manchao, Huang Runqiu, Wang Jinan, et al. Numerical method of engineering geology [M]. Beijing: Science Press, 2006. (in Chinese)
    [2] 刘儒勋, 舒其望. 计算流体力学的若干新方法[M]. 北京: 科学出版社, 2003.

    Liu Ruxun, Shu Qiwang. Some new methods of computational fluid dynamics [M]. Beijing: Science Press, 2003. (in Chinese)
    [3] 娄路亮, 曾攀, 方刚. 无网格方法及其在体积成形中的应用[J]. 塑性工程学报, 2001, 8(3): 1 − 5. doi: 10.3969/j.issn.1007-2012.2001.03.001

    Lou Luliang, Zeng Pan, Fang Gang. Meshless method and its application in volume forming [J]. Journal of Plastic Engineering, 2001, 8(3): 1 − 5. (in Chinese) doi: 10.3969/j.issn.1007-2012.2001.03.001
    [4] 郝亮. 基于SPH方法的土体大变形数值模拟研究[D]. 上海: 同济大学, 2008.

    Hao Liang. Numerical simulation of large deformation of soil based on SPH method [D]. Shanghai: Tongji University, 2008. (in Chinese)
    [5] 赵旭阳, 赵宇. 横向通过滑坡输油气管道应变响应分析[J]. 自然灾害学报, 2014, 23(4): 250 − 256.

    Zhao Xuyang, Zhao Yu. Strain response analysis of oil and gas pipeline crossing landslide [J]. Journal of Natural Disasters, 2014, 23(4): 250 − 256. (in Chinese)
    [6] 张会远, 管巧艳, 骆晓阳, 等. 管道穿越滑坡下静力学与数值模拟对比分析[J]. 煤田地质与勘探, 2017, 45(1): 85 − 89, 94. doi: 10.3969/j.issn.1001-1986.2017.01.017

    Zhang Huiyuan, Guan Qiaoyan, Luo Xiaoyang, et al. Comparative analysis of statics and numerical simulation of pipeline crossing landslide [J]. Coal Geology & Exploration, 2017, 45(1): 85 − 89, 94. (in Chinese) doi: 10.3969/j.issn.1001-1986.2017.01.017
    [7] 朱秀星. 地质灾害环境下埋地油气管线安全性研究[D]. 青岛: 中国石油大学(华东), 2009.

    Zhu Xiuxing. Study on safety of buried oil and gas pipeline under geological disaster environment [D]. Qingdao: China University of Petroleum, 2009. (in Chinese)
    [8] Fredj A, Dinovitzer A. Three-dimensional response of buried pipelines subjected to large soil deformation effects: Part I—3D continuum modeling using ALE and SPH formulations [C]// 2010 8th International Pipeline Conference. Canada, Calgary, Alberta, 2010.
    [9] Fredj A, Dinovitzer A. Three-dimensional response of buried pipelines subjected to large soil deformation effects: Part II—effects of the soil restraint on the response of pipe/soil systems [C]// 2010 8th International Pipeline Conference. Canada, Calgary, Alberta, 2010.
    [10] 朱勇, 林冬. 横向管道滑坡有限元模型的建立及验证[J]. 油气储运, 2017, 36(5): 563 − 567.

    Zhu Yong, Lin Dong. Establishment and verification of finite element model of transverse pipeline landslide [J]. Oil and Gas Storage and Transportation, 2017, 36(5): 563 − 567. (in Chinese)
    [11] 钱浩. 滑坡对输气管道的力学响应研究[D]. 成都: 西南石油大学, 2013.

    Qian Hao. Study on mechanical response of landslide to gas transmission pipeline [D]. Chengdu: Southwest Petroleum University, 2013. (in Chinese)
    [12] 胡海洋. 基于SPH方法的输气管道土质滑坡下的动力响应研究[D]. 成都: 西南石油大学, 2019.

    Hu Haiyang. Study on dynamic response of gas transmission pipeline under soil landslide based on SPH method [D]. Chengdu: Southwest Petroleum University, 2019. (in Chinese)
    [13] Johnson A M. Physical processes in geology [M]. New York: W. H. Freeman, 1970.
    [14] 费祥俊, 康志成, 王裕宜. 细颗粒浆体、泥石流浆体对泥石流运动的作用[J]. 山地研究, 1991, 9(3): 143 − 153.

    Fei Xiangjun, Kang Zhicheng, Wang Yuyi. Effect of fine particle slurry and debris flow slurry on debris flow movement [J]. Mountain Research, 1991, 9(3): 143 − 153. (in Chinese)
    [15] 胡德安, 韩旭, 肖毅华, 等. 光滑粒子法及其与有限元耦合算法的研究进展[J]. 力学学报, 2013, 45(5): 639 − 652.

    Hu Dean, Han Xu, Xiao Yihua, et al. Research progress of smooth particle method and its coupling algorithm with finite element method [J]. Journal of Mechanics, 2013, 45(5): 639 − 652. (in Chinese)
    [16] Bergeron D, Walker R, Coffey C. Detonation of 100-gram anti-personnel mine surrogate charges in sand - A test case for computer code validation [C]// Technical Report 668, Defence Research Establishment Suffield. Canada, Ralston, Alberta, 1998.
    [17] 田晓建. 爆炸冲击作用下埋地含缺陷输气管道的动力响应研究[D]. 成都: 西南石油大学, 2019.

    Tian Xiaojian. Study on dynamic response of buried gas transmission pipeline with defects under explosion impact [D]. Chengdu: Southwest Petroleum University, 2019. (in Chinese)
    [18] 梁博, 蒋宏业, 徐涛龙, 等. 基于SPH-FEM耦合算法的埋地输气管道近场爆炸冲击动力响应[J]. 石油学报, 2017, 38(11): 1326 − 1334. doi: 10.7623/syxb201711012

    Liang Bo, Jiang Hongye, Xu Taolong, et al. Dynamic response of buried gas pipeline to near-field explosion impact based on SPH-FEM coupling algorithm [J]. Acta Petrolei Sinica, 2017, 38(11): 1326 − 1334. (in Chinese) doi: 10.7623/syxb201711012
    [19] 徐涛龙, 梁博, 文霞, 等. 天然气泄漏爆炸冲击同沟并行邻管的模拟方法[J]. 工程力学, 2019, 36(增刊): 329 − 338. doi: 10.6052/j.issn.1000-4750.2018.05.S061

    Xu Taolong, Liang Bo, Wen Xia, et al. Simulation method of natural gas leakage explosion impacting parallel adjacent pipes in the same trench [J]. Engineering Mechanics, 2019, 36(Suppl): 329 − 338. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.05.S061
    [20] 穆朝民, 任辉启, 辛凯, 等. 变埋深条件下土中爆炸成坑效应[J]. 解放军理工大学学报(自然科学版), 2010, 11(2): 112 − 116.

    Mu Chaomin, Ren Huiqi, Xin Kai, et al. Effect of explosion cratering in soil with variable buried depth [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2010, 11(2): 112 − 116. (in Chinese)
    [21] 傅金阳, 谢佳伟, 房雅楠, 等. EPB盾构开挖面稳定性的PFC-FLAC耦合分析[J]. 华中科技大学学报(自然科学版), 2019, 47(5): 116 − 121.

    Fu Jinyang, Xie Jiawei, Fang Yanan, et al. PFC-FLAC coupling analysis of EPB shield excavation face stability [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(5): 116 − 121. (in Chinese)
    [22] 周秋爽. 基于三维离散—连续耦合方法的新建隧道下穿既有盾构隧道变形特性研究[D]. 北京: 北京交通大学, 2019.

    Zhou Qiushuang. Study on deformation characteristics of new tunnel under existing shield tunnel based on three-dimensional discrete continuous coupling method [D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)
    [23] 王毅. 基于耦合数值方法的下穿采空区隧道围岩稳定性研究[D]. 重庆: 重庆交通大学, 2019.

    Wang Yi. Study on surrounding rock stability of Tunnel Under Goaf Based on coupled numerical method [D]. Chongqing: Chongqing Jiaotong University, 2019. (in Chinese)
    [24] 彭继慎, 何武林. 基于离散元分析的夹矸煤层硬岩掘进机载荷分析[J]. 机械设计, 2020, 37(6): 65 − 70.

    Peng Jishen, He Wulin. Load analysis of Hard Rock Roadheader in gangue seam based on discrete element analysis [J]. Journal of Machine Design, 2020, 37(6): 65 − 70. (in Chinese)
    [25] 徐涛龙, 姚安林, 李又绿, 等. 基于全尺寸试验的挖掘机具作用埋地输气管道的多体动力学仿真[J]. 工程力学, 2017, 34(增刊): 300 − 307. doi: 10.6052/j.issn.1000-4750.2016.04.S033

    Xu Taolong, Yao Anlin, Li Youlü, et al. Multi body dynamics simulation of buried gas transmission pipeline under the action of excavation equipment based on full-scale test [J]. Engineering Mechanics, 2017, 34(Suppl): 300 − 307. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.04.S033
    [26] 徐涛龙, 姚安林, 曾祥国, 等. 埋地钢质输气管道动态挖掘响应的试验研究及模拟分析[J]. 振动与冲击, 2017, 36(1): 230 − 239.

    Xu Taolong, Yao Anlin, Zeng Xiangguo, et al. Experimental study and simulation analysis of dynamic excavation response of buried steel gas transmission pipeline [J]. Journal of Vibration and Shock, 2017, 36(1): 230 − 239. (in Chinese)
    [27] Taolong Xu, Anlin Yao, Hongye Jiang, et al. Dynamic response of buried gas pipeline under excavator loading: Experimental/numerical study [J]. Engineering Failure Analysis, 2018, 89: 57 − 73. doi: 10.1016/j.engfailanal.2018.02.026
  • 加载中
图(17)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  13
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-07
  • 修回日期:  2022-03-10
  • 网络出版日期:  2022-04-06
  • 刊出日期:  2022-06-06

目录

    /

    返回文章
    返回