留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单元式双钢板混凝土组合剪力墙抗震性能试验研究

刘栋 石永久 余香林

刘栋, 石永久, 余香林. 单元式双钢板混凝土组合剪力墙抗震性能试验研究[J]. 工程力学, 2022, 39(S): 250-260, 285. doi: 10.6052/j.issn.1000-4750.2021.06.S049
引用本文: 刘栋, 石永久, 余香林. 单元式双钢板混凝土组合剪力墙抗震性能试验研究[J]. 工程力学, 2022, 39(S): 250-260, 285. doi: 10.6052/j.issn.1000-4750.2021.06.S049
LIU Dong, SHI Yong-jiu, YU Xiang-lin. EXPERIMENTAL STUDY ON SEISMIC BEHAVIOR OF MODULAR COMPOSITE SHEAR WALL WITH DOUBLE STEEL PLATES AND INFILL CONCRETE[J]. Engineering Mechanics, 2022, 39(S): 250-260, 285. doi: 10.6052/j.issn.1000-4750.2021.06.S049
Citation: LIU Dong, SHI Yong-jiu, YU Xiang-lin. EXPERIMENTAL STUDY ON SEISMIC BEHAVIOR OF MODULAR COMPOSITE SHEAR WALL WITH DOUBLE STEEL PLATES AND INFILL CONCRETE[J]. Engineering Mechanics, 2022, 39(S): 250-260, 285. doi: 10.6052/j.issn.1000-4750.2021.06.S049

单元式双钢板混凝土组合剪力墙抗震性能试验研究

doi: 10.6052/j.issn.1000-4750.2021.06.S049
基金项目: “首都世界城市顺畅交通协同创新中心”项目;国家重点研发计划专项项目(2017YFC0703401)
详细信息
    作者简介:

    石永久(1962−),男,黑龙江人,教授,博士,博导,主要从事高性能组合结构体系研究 (E-mail: shiyj@mail.tsinghua.edu.cn)

    余香林(1984−),男,江西人,博士,主要从事高性能组合结构体系研究(E-mail: yushanley@mail.tsinghua.edu.cn)

    通讯作者:

    刘 栋(1995−),男,山东人,博士生,主要从事高性能组合结构体系研究 (E-mail: 1065129737@qq.com)

  • 中图分类号: TU398+.2;TU352.1+1

EXPERIMENTAL STUDY ON SEISMIC BEHAVIOR OF MODULAR COMPOSITE SHEAR WALL WITH DOUBLE STEEL PLATES AND INFILL CONCRETE

  • 摘要: 单元式双钢板混凝土组合剪力墙便于拆装,能够实现建筑设计的灵活性,能够在抗震墙上方便快捷地开设门窗洞口。该文介绍了9个单元式双钢板混凝土组合剪力墙试件的抗震性能试验,研究了在低周往复荷载作用下单元式组合剪力墙的力学性能和破坏模式,分析了单元数量、轴压比等因素对抗震性能的影响。试验结果表明:单元式双钢板混凝土组合剪力墙具有承载力较好、良好的可拆装性、滞回曲线饱满,抗震性能优越。试件整体平均的位移延性系数是2.3,说明剪力墙试件具有较好的延性,到达峰值荷载后在较大的变形下能够继续维持荷载。墙体单元数量越多,承载力越低,初始刚度较低,但墙体具有更好的延性,能够在较大位移时具有更好的耗能能力。大轴压比可以获得较高的屈服荷载及峰值荷载,但破坏过程迅速,延性较差。混凝土强度增大,可以提高单元式组合墙的屈服荷载及峰值荷载,承载能力有所提高,但延性系数基本不变,说明混凝土强度对单元式组合墙体的变形能力影响较小。
  • 图  1  单元式双钢板混凝土组合剪力墙

    Figure  1.  The modular composite shear wall with double steel plates and infill concrete

    图  2  组合墙连接构造详图

    Figure  2.  Structural details of composite wall connection

    图  3  钢板材性试验应力-应变图

    Figure  3.  Stress-strain diagram of steel plate material property test

    图  4  试验装置

    Figure  4.  Test device diagram plates and infill concrete

    图  5  试验加载制度

    Figure  5.  Test loading system

    图  6  试验测点布置

    Figure  6.  Layout of test points

    图  7  试件破坏现象

    Figure  7.  Specimen failure mode phenomenon

    图  8  试件滞回曲线

    Figure  8.  Hysteretic curve of specimen

    图  9  试件骨架曲线

    Figure  9.  Skeleton curve of specimen

    图  10  刚度退化曲线

    Figure  10.  Stiffness degradation curve

    图  11  强度退化曲线

    Figure  11.  Strength degradation curve

    图  12  构件耗能曲线

    Figure  12.  Component energy dissipation curve

    表  1  试件参数表

    Table  1.   Test piece parameter table

    构件编号单元数量长度/mm混凝土轴压比
    MCW1-C30-600×3-0.231800C300.2
    MCW2-C30-600×3-0.631800C300.2
    MCW3-C40-900×2-0.221800C300.6
    MCW4-C40-900×2-0.121800C400.2
    MCW5-C30-1800×1-0.211800C400.1
    MCW6-C40-1800×1-0.211800C400.2
    MCW7-C30-600×2-0.221200C300.2
    MCW8-C40-900×1-0.21900C300.2
    MCW9-C30-600×3-0.231800C400.2
    下载: 导出CSV

    表  2  材性试验结果

    Table  2.   The material property test results

    混凝土抗压强度/MPa钢板实测厚度/mm弹性模量/MPa屈服强度/MPa抗拉强度/MPa伸长率/(%)
    C3039.0角钢19.32.06×105382.5595.432.0
    C4048.7面板5.82.09×105430.6590.838.8
    底板19.62.09×105386.1600.942.0
    下载: 导出CSV

    表  3  屈服状态、极限状态、破坏状态对应的荷载和位移

    Table  3.   Load and displacement corresponding to yield state, limit state and failure state

    构件编号加载方向屈服点峰值点破坏点位移延性系数
    名义屈服荷载/kN屈服位移/mm峰值荷载/kN峰值点位移/mm破坏荷载/mm有效破坏位移
    MCW1-C30-600×3-0.2正向1121.820.71353.347.61150.356.72.75
    负向1089.221.11306.742.81110.753.92.56
    MCW2-C30-600×3-0.6正向1244.811.31483.520.01370.221.91.95
    负向1068.58.01285.319.41092.520.32.54
    MCW3-C40-900×2-0.2正向1427.014.51763.528.01499.031.92.20
    负向1289.016.91485.531.71262.737.32.21
    MCW4-C40-900×2-0.1正向1300.518.51600.833.51360.743.62.36
    负向1419.526.01766.640.31766.640.31.55
    MCW5-C30-1800×1-0.2正向1750.713.52139.817.81818.926.61.74
    负向1649.517.42189.430.41861.030.41.97
    MCW6-C40-1800×1-0.2正向1684.416.52064.424.62064.424.61.50
    负向1396.117.31798.526.61528.727.21.58
    MCW7-C30-600×2-0.2正向762.416.4940.939.3799.852.63.20
    负向655.619.6816.436.0693.956.02.86
    MCW8-C40-900×1-0.2正向578.018.5675.039.6573.849.72.69
    负向546.416.8642.035.6545.749.12.93
    MCW9- C30-600×3-0.21123.323.41355.053.81151.888.73.80
    下载: 导出CSV

    表  4  屈服状态、极限状态、破坏状态对应的位移角

    Table  4.   Displacement angle corresponding to yield state, limit state and failure state

    构件编号屈服位移角峰值位移角有效破坏位移角
    MCW1-C30-600×3-0.21/861/401/33
    MCW2-C30-600×3-0.61/1871/911/85
    MCW3-C40-900×2-0.21/1151/601/52
    MCW4-C40-900×2-0.11/811/491/43
    MCW5-C30-1800×1-0.21/1171/751/63
    MCW6-C40-1800×1-0.21/1071/701/69
    MCW7-C30-600×2-0.21/1001/481/33
    MCW8-C40-900×1-0.21/1021/481/36
    MCW9-C30-600×3-0.21/771/331/20
    下载: 导出CSV
  • [1] 聂建国, 卜凡民, 樊健生. 低剪跨比双钢板-混凝土组合剪力墙抗震性能试验研究[J]. 建筑结构学报, 2011, 32(11): 74 − 81. doi: 10.14006/j.jzjgxb.2011.11.019

    Nie Jianguo, Bu Fanmin, Fan Jiansheng. New progress in research on double steel plate concrete composite shear walls [J]. Journal of Building Structures, 2011, 32(11): 74 − 81. (in Chinese) doi: 10.14006/j.jzjgxb.2011.11.019
    [2] 聂建国, 陶慕轩, 樊健生, 等. 双钢板-混凝土组合剪力墙研究新进展[J]. 建筑结构, 2011, 41(12): 52 − 60. doi: 10.19701/j.jzjg.2011.12.008

    Nie Jianguo, Tao Muxuan, Fan Jiansheng, et al. New progress in research on double steel plate concrete composite shear walls [J]. Building Structure, 2011, 41(12): 52 − 60. (in Chinese) doi: 10.19701/j.jzjg.2011.12.008
    [3] 汪家继, 樊健生, 陶慕轩, 等. 中高剪跨比双钢板-混凝土组合剪力墙受力性能有限元分析[J]. 建筑结构学报, 2015, 36(增刊 2): 1 − 8. doi: 10.14006/j.jzjgxb.2015.S2.001

    Wang Jiaji, Fan Jiansheng, Tao Muxuan, et al. Finite element analysis of medium high shear span ratio double steel plate concrete composite shear wall finite element analysis of [J]. Journal of Building Structures, 2015, 36(Suppl 2): 1 − 8. (in Chinese) doi: 10.14006/j.jzjgxb.2015.S2.001
    [4] 马晓伟, 聂建国, 陶慕轩. 钢板-混凝土组合剪力墙正常使用阶段有效刚度[J]. 土木工程学报, 2014, 47(7): 18 − 26. doi: 10.15951/j.tmgcxb.2014.07.029

    Ma Xiaowei, Nie Jianguo, Tao Muxuan. The effective stiffness of the normal use stage of steel plate concrete composite shear walls [J]. China Civil Engineering Journal, 2014, 47(7): 18 − 26. (in Chinese) doi: 10.15951/j.tmgcxb.2014.07.029
    [5] 聂建国, 卜凡民, 樊健生. 高轴压比、低剪跨比双钢板-混凝土组合剪力墙拟静力试验研究[J]. 工程力学, 2013, 30(6): 60 − 66. doi: 10.6052/j.issn.1000-4750.2011.09.0587

    Nie Jianguo, Bu Fanmin, Fan Jiansheng. High axial compression ratio, low shear span ratio, double steel plate concrete composite shear wall quasi static test research [J]. Engineering Mechanics, 2013, 30(6): 60 − 66. (in Chinese) doi: 10.6052/j.issn.1000-4750.2011.09.0587
    [6] 胡红松, 聂建国. 双钢板-混凝土组合剪力墙变形能力分析[J]. 建筑结构学报, 2013, 34(5): 52 − 62. doi: 10.14006/j.jzjgxb.2013.05.006

    Hu Hongsong, Nie Jianguo. Deformation capacity analysis of double steel plate concrete composite shear walls [J]. Journal of Building Structures, 2013, 34(5): 52 − 62. (in Chinese) doi: 10.14006/j.jzjgxb.2013.05.006
    [7] 马晓伟, 聂建国, 陶慕轩, 等. 双钢板-混凝土组合剪力墙压弯承载力数值模型及简化计算公式[J]. 建筑结构学报, 2013, 34(4): 99 − 106. doi: 10.14006/j.jzjgxb.2013.04.011

    Ma Xiaowei, Nie Jianguo, Tao Muxuan, et al. Numerical model of bending bearing capacity of double steel concrete composite shear wall and simplified calculation formula [J]. Journal of Building Structures, 2013, 34(4): 99 − 106. (in Chinese) doi: 10.14006/j.jzjgxb.2013.04.011
    [8] 李盛勇, 聂建国, 刘付钧, 等. 外包多腔钢板-混凝土组合剪力墙抗震性能试验研究[J]. 土木工程学报, 2013, 46(10): 26 − 38. doi: 10.15951/j.tmgcxb.2013.10.016

    Li Shengyong, Nie Jianguo, Liu Fujun, et al. Experimental study on seismic performance of outsourced multi cavity steel plate concrete composite shear walls [J]. China Civil Engineering Journal, 2013, 46(10): 26 − 38. (in Chinese) doi: 10.15951/j.tmgcxb.2013.10.016
    [9] 卜凡民, 聂建国, 樊健生. 高轴压比下中高剪跨比双钢板-混凝土组合剪力墙抗震性能试验研究[J]. 建筑结构学报, 2013, 34(4): 91 − 98. doi: 10.14006/j.jzjgxb.2013.04.010

    Bu Fanmin, Nie Jianguo, Fan Jiansheng. Experimental study on seismic performance of high shear span ratio double steel plate concrete composite shear walls under high axial compression ratio [J]. Journal of Building Structures, 2013, 34(4): 91 − 98. (in Chinese) doi: 10.14006/j.jzjgxb.2013.04.010
    [10] Ozaki M, Akita S, Osuga H, et al. Study on steel plate reinforced concrete panels subjected to cyclic in-plane shear [J]. Nuclear Engineering and Design, 2004, 228(1/2/3): 225 − 244. doi: 10.1016/j.nucengdes.2003.06.010
    [11] Rafiei S, Hossain K M A, Lachemi M, et al. Finite element modeling of double skin profiled composite shear wall system under in-plane loadings [J]. Engineering Structures, 2013, 56: 46 − 57. doi: 10.1016/j.engstruct.2013.04.014
    [12] 刘鸿亮. 带约束拉杆双层钢板内填混凝土组合剪力墙抗震性能试验研究[D]. 广州: 华南理工大学, 2013.

    Liu Hongliang. Experimental study on seismic behavior of concrete filled composite shear walls with tied bars and double steel plates [D]. Guangzhou: South China University of Technology, 2013. (in Chinese)
    [13] 汤序霖, 丁昌银, 陈庆军, 等. 带加劲肋多腔双层钢板-混凝土组合剪力墙的抗震性能试验[J]. 工程力学, 2017, 34(12): 150 − 161. doi: 10.6052/j.issn.1000-4750.2016.08.0639

    Tang Xulin, Ding Changyin, Chen Qingjun, et al. Seismic performance test of a stiffened multi cavity double deck steel plate concrete composite shear wall [J]. Engineering Mechanics, 2017, 34(12): 150 − 161. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.08.0639
    [14] 汤序霖, 丁昌银, 左志亮, 等. 设置加劲肋的双层钢板-混凝土组合剪力墙抗震性能试验研究[J]. 建筑结构学报, 2017, 38(5): 85 − 91. doi: 10.14006/j.jzjgxb.2017.05.011

    Tang Xulin, Ding Changyin, Zuo Zhiliang, et al. Experimental study on seismic performance of double steel plate concrete composite shear wall with stiffening ribs [J]. Journal of Building Structures, 2017, 38(5): 85 − 91. (in Chinese) doi: 10.14006/j.jzjgxb.2017.05.011
    [15] 徐文平, 徐彤. 格栅管式双钢板混凝土组合剪力墙抗震性能试验[J]. 建筑科学与工程学报, 2018, 35(2): 111 − 118.

    Xu Wenping, Xu Tong. Seismic performance test of double steel plate concrete composite shear walls. [J]. Journal of Architecture and Civil Engineering, 2018, 35(2): 111 − 118. (in Chinese)
    [16] Liu Dong, Shi Yongjiu, Yu Xianglin, et al. Finite element model on mechanical behavior of unit-typed composite shear wall with double steel plates and infill concrete [C]. Jeju, Korea: The 10th International on Steel Structures (ISSS), 2019.
    [17] 刘栋, 石永久, 余香林, 等. 单元式双钢板组合剪力墙抗侧性能影响因素分析[J]. 钢结构(中英文), 2020, 35(12): 43 − 49. doi: 10.13206/j.gjgS20120701

    Liu Dong, Shi Yongjiu, Yu Xianglin, et al. Parametric analyses on lateral performance about modular composite shear wall with double steel plates and infill concrete [J]. Steel Construction (Chinese & English), 2020, 35(12): 43 − 49. (in Chinese) doi: 10.13206/j.gjgS20120701
    [18] JGJ/T 101−2015, 建筑抗震试验规程[S]. 北京: 中国建筑工业出版社, 2015.

    JGJ/T 101−2015, Code for seismic test of buildings [S]. Beijing: China Construction Industry Press, 2015. (in Chinese)
    [19] JGJ 138−2016, 组合结构设计规范[S]. 北京: 中国建筑工业出版社, 2016.

    JGJ 138−2016, Code for design of composite structures [S]. Beijing: China Construction Industry Press, 2016. (in Chinese)
    [20] GB/T 228.1−2010, 金属材料 拉伸试验 第一部分: 室温试验方法[S]. 北京: 中国建筑工业出版社, 2010.

    GB/T 228.1−2010, Metallic materials tensile test Part 1: room temperature test method [S]. Beijing: China Construction Industry Press, 2010. (in Chinese)
    [21] 张远淼, 余江滔, 陆洲导, 等. ECC修复震损剪力墙抗震性能试验研究[J]. 工程力学, 2015, 32(1): 72 − 80. doi: 10.6052/j.issn.1000-4750.2013.07.0642

    Zhang Yuanmiao, Yu Jiangtao, Lu Zhoudao, et al. Experimental test on aseismic behavior of damaged reinforced concrete shear wall repaired with ECC [J]. Engineering Mechanics, 2015, 32(1): 72 − 80. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.07.0642
    [22] 剡理祯, 梁兴文, 徐洁, 等. 钢筋混凝土剪力墙变形能力计算方法研究[J]. 工程力学, 2014, 31(11): 92 − 98. doi: 10.6052/j.issn.1000-4750.2013.05.0414

    Yan Lizhen, Liang Xingwen, Xu Jie, et al. Research on calculation method of deformation capacity of reinforced concrete shear wall [J]. Engineering Mechanics, 2014, 31(11): 92 − 98. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.05.0414
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  24
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-08
  • 修回日期:  2022-04-13
  • 网络出版日期:  2022-04-29
  • 刊出日期:  2022-06-06

目录

    /

    返回文章
    返回