EXPERIMENTAL STUDY ON PREFABRICATED STEEL-REINFORCED CONCRETE SLAB WITH C-TYPE STEEL BORDER
-
摘要: 该文提出一种带C形钢边框装配式钢筋混凝土预制楼板,可有效提高板间连接强度、实现楼板双向受力,提高楼板设计承载力,增加楼板刚度。对6块新型楼板进行了静力试验,分析了钢筋及C形钢应变发展、荷载-挠度变化规律,得到了试件的设计承载力、破坏模式和极限承载力。基于有限元参数分析,得到C形钢边框腹板高度、腹板厚度及翼缘宽度等因素对楼板受弯承载力的影响,根据试验与有限元结果提出受弯承载力简化计算方法。Abstract: A prefabricated steel-reinforced concrete slab with C-type steel border was proposed, which can effectively improve the connection strength, realize two-way slab and increase the rigidity of the floor. Static tests of 6 proposed slab specimens were conducted. The strain development of steel bars and C-type steel, as well as the load-deflection relationships, were analysed, while the design bearing capacity, failure mode and ultimate bearing capacity were obtained. Parametrical analysis by finite element method was performed to investigate the influence of the height and thickness of the web and the width of the flange with C-type steel border on the flexural bearing capacity of the floor. Based on the test and finite element results, a simplified calculation method for the flexural bearing capacity of the proposed slab is proposed.
-
表 1 试件设计参数
Table 1. Design parameters of specimens
样品编号 楼板尺寸/mm 配筋 纵向钢筋数量 SJB1-1 4200×1398×120 8@2006 SJB2-1 4200×1296×120 8@2005 SJB3-1 4200×1396×120 8@2006 SJB3-2 4200×1396×120 8@2006 SJB2-2 4200×1296×120 8@2005 SJB1-2 4200×1398×120 8@2006 表 2 试件主要性能指标
Table 2. Main performance indicators of the specimens
试件编号 开裂荷载Pcr/kN 屈服荷载Py/kN 极限荷载Pu/kN Py/Pu 设计承载力P1/kN P1/Pu SJB1-1 16.49 46.59 59.45 0.78 30.39 0.51 SJB1-2 16.03 45.48 60.38 0.75 29.15 0.48 平均值1 16.26 46.04 59.92 0.77 29.77 0.50 SJB2-1 14.95 39.32 52.09 0.75 27.65 0.53 SJB2-2 14.34 39.89 51.52 0.77 28.05 0.54 平均值2 14.65 39.61 51.81 0.76 27.85 0.54 SJB3-1 16.40 42.29 55.31 0.76 28.49 0.52 SJB3-2 16.01 42.41 53.61 0.79 28.25 0.53 平均值3 16.20 42.35 54.46 0.78 28.37 0.52 表 3 材性试验主要参数
Table 3. Main parameters of material property test
试样类型 直径或厚度/$ \mathrm{m}\mathrm{m} $ 屈服强度${f}_{\rm y}$/(N/mm2) 抗拉强度${f}_{\rm u}$/(N/mm2) 弹性模量E/GPa 极限应变${\varepsilon }_{\rm u}$/(%) 钢筋 8 440.67 598.12 201.13 13.46 C形钢 4 301.88 386.54 215.72 11.25 表 4 有限元模型参数表
Table 4. Parameters of finite element models
试件编号 腹板高/mm 腹板厚/mm 翼缘宽/mm H1 60 4 35 H2 70 4 35 H3 80 4 35 H4 90 4 35 T1 80 4 35 T2 80 6 35 T3 80 8 35 T4 80 10 35 W1 80 4 35 W2 80 4 50 W3 80 4 65 表 5 不同参数下的楼板模型的设计和极限承载力
Table 5. Design and ultimate resistance of floor model with different parameters
项目 H1 H2 H3(T1,W1) H4 T2 T3 T4 W2 W3 设计承载力/kN 21.59 24.59 31.09 34.59 39.69 48.09 55.09 38.59 46.59 极限承载力/kN 45.87 52.65 60.37 69.82 78.10 92.63 110.10 72.24 88.82 表 6 极限承载力模拟值和计算值对比
Table 6. Comparison between simulated and calculated value of ultimate resistance
项目 H1 H2 H4 T2 T3 T4 W2 W3 模拟结果/kN 45.87 52.65 69.82 78.10 92.63 110.10 72.24 88.82 计算结果/kN 44.32 53.81 72.80 79.14 94.96 110.79 75.97 88.63 模拟结果/计算结果 1.03 0.98 0.96 0.99 0.98 0.99 0.95 1.00 -
[1] Liu X C, Zhan X X, Pu S H, et al. Seismic performance study on slipping bolted truss-to-column connections in modularized prefabricated steel structures [J]. Engineering Structures, 2018, 163: 241 − 254. [2] 王伟, 陈以一, 余亚超, 等. 分层装配式支撑钢结构工业化建筑体系[J]. 建筑结构, 2012, 42(10): 48 − 52.Wang Wei, Chen Yiyi, Yu Yachao, et al. Floor-by-floor assembled steel braced structures for prefabricated buildings [J]. Building Structure, 2012, 42(10): 48 − 52. (in Chinese) [3] Liu X C, Yang Z W, Wang H X, et al. Seismic performance of H-section beam to HSS column connection in prefabricated structures [J]. Journal of Constructional Steel Research, 2017, 138: 1 − 16. [4] Zhang A, Liu X. The new development of industrial assembly high-rise steel structure system in China [C]// Proceedings of the 10th Pacific Structural Steel Conference (PSSC 2013) – Advancements and Achievements in Structural Steel. Singapore, Research Publishing, 2013: 976 − 981. [5] Liu X C, Xu A X, Zhang A L, et al. Static and seismic experiment for welded joints in modularized prefabricated steel structure [J]. Journal of Constructional Steel Research, 2015(5): 183 − 195. [6] 聂建国, 陈必磊, 陈戈, 等. 钢筋混凝土叠合板的试验研究[J]. 工业建筑, 2003(12): 43 − 46, 33.Nie Jianguo, Chen Bilei, Chen Ge, et al. Experimental study on shear behavior of R.C. laminated slabs [J]. Industrial Construction, 2003(12): 43 − 46, 33. (in Chinese) [7] 丁克伟, 陈东, 刘运林, 等. 一种新型拼缝结构的叠合板受力机理及试验研究[J]. 土木工程学报, 2015, 48(10): 64 − 69.Ding Kewei, Chen Dong, Liu Yunlin, et al. Theoretical and experimental study on mechanical behavior of laminated slabs with new type joints [J]. China Civil Engineering Journal, 2015, 48(10): 64 − 69. (in Chinese) [8] 赵勇, 邹仁博. 高强混凝土新旧结合面抗剪性能试验[J]. 同济大学学报(自然科学版), 2017, 45(7): 962 − 969.Zhao Yong, Zou Renbo. Experimental investigation on interface of high strength concretes cast at different times under direct shear [J]. Journal of Tongji University (Natural Science), 2017, 45(7): 962 − 969. (in Chinese) [9] Ailin Zhang, Xiaofei Ma, Hao Fang, et al. Seismic behaviour of connections between prefabricated RC flat slabs and square steel tube columns [J]. Engineering Structures, 2018, 173: 800 − 812. [10] 刘学春, 周小俊, 张译文. 外挂整体装配式墙体及连接抗震性能研究[J]. 工业建筑, 2017, 47(7): 34 − 39, 33.Liu Xuechun, Zhou Xiaojun, Zhang Yiwen. Experimental study of seismic performance of integral assembled cladding panels and connections [J]. Industrial Construction, 2017, 47(7): 34 − 39, 33. (in Chinese) [11] 刘学春, 徐路, 张冬洁, 等. H型钢梁处装配式钢筋框架楼板纵向连接受力性能试验研究[J]. 工业建筑, 2018, 48(5): 54 − 61.Liu Xuechun, Xu Lu, Zhang Dongjie, et al. Experimental research on the mechanical properties of longitudinal direction connection of prefabricated steel bar truss slab at the H steel beam [J]. Industrial Construction, 2018, 48(5): 54 − 61. (in Chinese) [12] 赵唯以, 高泽鹏, 王琳, 等. 集中荷载作用下四边简支双钢板混凝土组合板的力学性能研究[J]. 工程力学, 2022, 39(3): 158 − 170, 192. doi: 10.6052/j.issn.1000-4750.2021.01.0077Zhao Weiyi, Gao Zepeng, Wang Lin, et al. Mechanical performance of two-way simply supported steel-plate composite slabs under concentrated load [J]. Engineering Mechanics, 2022, 39(3): 158 − 170, 192. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.01.0077 [13] 李小军, 李晓虎. 核电工程双钢板混凝土组合剪力墙面内受弯性能研究[J]. 工程力学, 2017, 34(9): 43 − 53. doi: 10.6052/j.issn.1000-4750.2016.08.0665Li Xiaojun, Li Xiaohu. Study on in-plane flexural behavior of double steel plates and concrete infill composite shear walls for nuclear engineering [J]. Engineering Mechanics, 2017, 34(9): 43 − 53. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.08.0665 [14] 徐志峰, 陈忠范, 朱松松, 等. 秸秆板轻钢高强泡沫混凝土剪力墙轴心受压性能研究[J]. 工程力学, 2018, 35(7): 219 − 231. doi: 10.6052/j.issn.1000-4750.2017.03.0262Xu Zhifeng, Chen Zhongfan, Zhu Songsong, et al. Study of lightweight steel high-strength foamed concrete shear wall covered with straw board subjected to axial loading [J]. Engineering Mechanics, 2018, 35(7): 219 − 231. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.03.0262 [15] GB 50010−2010, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010.GB 50010−2010, Code for design of concrete structures [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese) [16] GB/T 50152−2012, 混凝土结构试验方法标准[S]. 北京: 中国建筑工业出版社, 2012.GB/T 50152−2012, Standard for test method of concrete structures [S]. Beijing: China Architecture & Building Press, 2012. (in Chinese) -